Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
J Hazard Mater ; 160(2-3): 265-88, 2008 Dec 30.
Article in English | MEDLINE | ID: mdl-18455866

ABSTRACT

The available technologies for the abatement of phenol from water and gaseous streams are briefly reviewed, and the recent advancements summarized. Separation technologies such as distillation, liquid-liquid extraction with different solvents, adsorption over activated carbons and polymeric and inorganic adsorbents, membrane pervaporation and membrane-solvent extraction, have been discussed. Destruction technologies such as non-catalytic, supercritical and catalytic wet air oxidation, ozonation, non-catalytic, catalytic and enzymatic peroxide wet oxidation, electrochemical and photocatalytic oxidation, supercritical wet gasification, destruction with electron discharges as well as biochemical treatments have been considered. As for the abatement of phenol from gases, condensation, absorption in liquids, adsorption on solids, membrane separation, thermal, catalytic, photocatalytic and biological oxidation have also been considered. The experimental conditions and the performances of the different techniques have been compared.


Subject(s)
Phenols/isolation & purification , Water Pollutants, Chemical/isolation & purification , Adsorption , Catalysis , Health , Industrial Waste/adverse effects , Industrial Waste/analysis , Industry , Oxidation-Reduction , Phenols/chemical synthesis , Phenols/chemistry , Solvents
2.
Langmuir ; 22(22): 9214-9, 2006 Oct 24.
Article in English | MEDLINE | ID: mdl-17042532

ABSTRACT

Cu-Pd/Al2O3 bimetallic catalysts have been characterized by XRD, TEM, and EDX techniques. The surface structure has been investigated by FT-IR spectroscopy of low-temperature adsorbed CO in the reduced and in the oxidized state. Evidence has been provided of the formation of Cu-Pd alloy nanoparticles, both of the alpha-phase (disordered fcc) and of the beta-phase (ordered CsCl-type). IR spectra suggest that Cu likely decorates the edges while Pd mostly stays at the main faces. Part of copper disperses as Cu+ on the support even after reduction. The presence of copper seems to modify strongly the sate of oxidized Pd centers in oxidized high-Pd content materials. The redox chemistry of the system, where Pd is reduced more easily than Cu, appears to be very complex.

SELECTION OF CITATIONS
SEARCH DETAIL
...