Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
2.
J Clin Med ; 12(17)2023 Aug 22.
Article in English | MEDLINE | ID: mdl-37685515

ABSTRACT

Background: High total IgE levels are weak predictors of T2High and have been reported in nonallergic asthma. Therefore, the role of total serum IgE (IgE) in the T2High phenotype is still debated. Objective: This study investigated the reliability of stratifying asthmatics into IgEHigh and IgELow within the T2High and T2Low phenotypes. Methods: This cross-sectional single-center study investigated the association of clinical, functional, and bio-humoral parameters in a large asthmatic population stratified by IgE ≥ 100 kU/L, allergen sensitization, B-EOS ≥ 300/µL, and FENO ≥ 30 ppb. Results: Combining T2 biomarkers and IgE identifies (1) T2Low-IgELow (15.5%); (2) T2Low-IgEHigh (5.1%); (3) T2High-IgELow (33.6%); and T2High-IgEHigh (45.7%). T2Low-IgELow patients have more frequent cardiovascular and metabolic comorbidities, a higher prevalence of emphysema, and higher LAMA use than the two T2High subgroups. Higher exacerbation rates, rhinitis, and anxiety/depression syndrome characterize the T2Low-IgEHigh phenotype vs. the T2Low-IgELow phenotype. Within the T2High, low IgE was associated with female sex, obesity, and anxiety/depression. Conclusions: High IgE in T2Low patients is associated with a peculiar clinical phenotype, similar to T2High in terms of disease severity and nasal comorbidities, while retaining the T2Low features. IgE may represent an additional biomarker for clustering asthma in both T2High and T2Low phenotypes rather than a predictor of T2High asthma "per se".

3.
Int J Mol Sci ; 24(15)2023 Aug 05.
Article in English | MEDLINE | ID: mdl-37569855

ABSTRACT

Ischemia is the underlying mechanism in a wide variety of acute and persistent pathologies. As such, understanding the fine intracellular events occurring during (and after) the restriction of blood supply is pivotal to improving the outcomes in clinical settings. Among others, gaseous signaling molecules constitutively produced by mammalian cells (gasotransmitters) have been shown to be of potential interest for clinical treatment of ischemia/reperfusion injury. Nitric oxide (NO and its sibling, HNO), hydrogen sulfide (H2S), and carbon monoxide (CO) have long been proven to be cytoprotective in basic science experiments, and they are now awaiting confirmation with clinical trials. The aim of this work is to review the literature and the clinical trials database to address the state of development of potential therapeutic applications for NO, H2S, and CO and the clinical scenarios where they are more promising.


Subject(s)
Cardiovascular System , Gasotransmitters , Hydrogen Sulfide , Animals , Nitric Oxide , Signal Transduction , Carbon Monoxide/therapeutic use , Mammals
4.
Front Physiol ; 14: 1165868, 2023.
Article in English | MEDLINE | ID: mdl-37168227

ABSTRACT

Introduction: Glyphosate is the active compound of different non-selective herbicides, being the most used agriculture pesticide worldwide. Glyphosate and AMPA (one of its main metabolites) are common pollutants of water, soil, and food sources such as crops. They can be detected in biological samples from both exposed workers and general population. Despite glyphosate acts as inhibitor of the shikimate pathway, present only in plants and some microorganisms, its safety in mammals is still debated. Acute glyphosate intoxications are correlated to cardiovascular/neuronal damages, but little is known about the effects of the chronic exposure. Methods: We evaluated the direct biological effects of different concentrations of pure glyphosate/AMPA on a rat-derived cell line of cardiomyoblasts (H9c2) in acute (1-2 h) or sub-chronic (24-48 h) settings. We analyzed cell viability/morphology, ROS production and mitochondrial dynamics. Results: Acute exposure to high doses (above 10 mM) of glyphosate and AMPA triggers immediate cytotoxic effects: reduction in cell viability, increased ROS production, morphological alterations and mitochondrial function. When exposed to lower glyphosate concentrations (1 µM-1 mM), H9c2 cells showed only a slight variation in cell viability and ROS production, while mitochondrial dynamic was unvaried. Moreover, the phenotype was completely restored after 48 h of treatment. Surprisingly, the sub-chronic (48 h) treatment with low concentrations (1 µM-1 mM) of AMPA led to a late cytotoxic response, reflected in a reduction in H9c2 viability. Conclusion: The comprehension of the extent of human exposure to these molecules remains pivotal to have a better critical view of the available data.

5.
Respiration ; 101(8): 746-756, 2022.
Article in English | MEDLINE | ID: mdl-35512642

ABSTRACT

BACKGROUND: In asthma, exhaled nitric oxide (FENO) is a clinically established biomarker of airway T2 inflammation and an indicator for anti-inflammatory therapy. OBJECTIVES: The aim of the study was to identify, in an observational real-world cross-sectional study, the main characteristics of patients with asthma as classified by their FENO level. METHOD: We stratified 398 patients with stable mild-to-severe asthma according to FENO level as low (≤25 ppb) versus elevated (>25 ppb), subdividing the latter into two subgroups: moderately elevated (26-50 ppb) versus very high FENO (>50 ppb). Clinical, functional, and blood parameters were extrapolated from patients' chart data and compared with the FENO stratification. Predictors of low and elevated FENO asthma were detected by logistic regression model. RESULTS: Low BMI, higher blood eosinophilia, allergen poly-sensitization, the severest airflow obstruction (FEV1/FVC), and anti-leukotriene use are predictors of elevated FENO values in asthma, as well as persistent rhinitis and chronic rhinosinusitis with or without nasal polyps. Beyond these, younger age, more than 2 asthma exacerbations/year, higher airflow reversibility (post-bronchodilator ∆FEV1), and oral corticosteroid dependence are predictors of very high FENO values. In contrast, obesity, obstructive sleep apnoea syndrome, gastroesophageal reflux disease, arterial hypertension, and myocardial infarction are predictors of low FENO asthma. In our population, FENO correlated with blood eosinophils, airflow obstruction, and reversibility and negatively correlated with age and BMI. CONCLUSIONS: Stratifying patients by FENO level can identify specific asthma phenotypes with distinct clinical features and predictors useful in clinical practice to tailor treatment and improve asthmatic patients' outcomes.


Subject(s)
Asthma , Pulmonary Disease, Chronic Obstructive , Asthma/drug therapy , Breath Tests , Cross-Sectional Studies , Exhalation , Humans , Nitric Oxide
6.
Antioxidants (Basel) ; 10(12)2021 Nov 24.
Article in English | MEDLINE | ID: mdl-34942967

ABSTRACT

Iron accumulation is a key mediator of several cytotoxic mechanisms leading to the impairment of redox homeostasis and cellular death. Iron overload is often associated with haematological diseases which require regular blood transfusion/phlebotomy, and it represents a common complication in thalassaemic patients. Major damages predominantly occur in the liver and the heart, leading to a specific form of cell death recently named ferroptosis. Different from apoptosis, necrosis, and autophagy, ferroptosis is strictly dependent on iron and reactive oxygen species, with a dysregulation of mitochondrial structure/function. Susceptibility to ferroptosis is dependent on intracellular antioxidant capacity and varies according to the different cell types. Chemotherapy-induced cardiotoxicity has been proven to be mediated predominantly by iron accumulation and ferroptosis, whereas there is evidence about the role of ferritin in protecting cardiomyocytes from ferroptosis and consequent heart failure. Another paradigmatic organ for transfusion-associated complication due to iron overload is the liver, in which the role of ferroptosis is yet to be elucidated. Some studies report a role of ferroptosis in the initiation of hepatic inflammation processes while others provide evidence about an involvement in several pathologies including immune-related hepatitis and acute liver failure. In this manuscript, we aim to review the literature to address putative common features between the response to ferroptosis in the heart and liver. A better comprehension of (dys)similarities is pivotal for the development of future therapeutic strategies that can be designed to specifically target this type of cell death in an attempt to minimize iron-overload effects in specific organs.

7.
Biomedicines ; 9(11)2021 Nov 13.
Article in English | MEDLINE | ID: mdl-34829913

ABSTRACT

Asthma is a heterogeneous and complex condition characterized by chronic airway inflammation, which may be clinically stratified into three main phenotypes: type 2 (T2) low, T2-high allergic, and T2-high non-allergic asthma. This real-world study investigated whether phenotyping patients with asthma using non-invasive parameters could be feasible to characterize the T2-low and T2-high asthma phenotypes in clinical practice. This cross-sectional observational study involved asthmatic outpatients (n = 503) referring to the Severe Asthma Centre of the San Luigi Gonzaga University Hospital. Participants were stratified according to the patterns of T2 inflammation and atopic sensitization. Among outpatients, 98 (19.5%) patients had T2-low asthma, 127 (25.2%) T2-high non-allergic, and 278 (55.3%) had T2-high allergic phenotype. In comparison to T2-low, allergic patients were younger (OR 0.945, p < 0.001) and thinner (OR 0.913, p < 0.001), had lower smoke exposure (OR 0.975, p < 0.001) and RV/TLC% (OR 0.950, p < 0.001), higher prevalence of asthma severity grade 5 (OR 2.236, p < 0.05), more frequent rhinitis (OR 3.491, p < 0.001) and chronic rhinosinusitis with (OR 2.650, p < 0.001) or without (OR 1.919, p < 0.05) nasal polyps, but less common arterial hypertension (OR 0.331, p < 0.001). T2-high non-allergic patients had intermediate characteristics. Non-invasive phenotyping of asthmatic patients is possible in clinical practice. Identifying characteristics in the three main asthma phenotypes could pave the way for further investigations on useful biomarkers for precision medicine.

8.
Oxid Med Cell Longev ; 2021: 8886666, 2021.
Article in English | MEDLINE | ID: mdl-33953839

ABSTRACT

Endothelial cell injury and vascular function strongly correlate with cardiac function following ischemia/reperfusion injury. Several studies indicate that endothelial cells are more sensitive to ischemia/reperfusion compared to cardiomyocytes and are critical mediators of cardiac ischemia/reperfusion injury. H2S is involved in the regulation of cardiovascular system homeostasis and can act as a cytoprotectant during ischemia/reperfusion. Activation of ERK1/2 in endothelial cells after H2S stimulation exerts an enhancement of angiogenesis while its inhibition significantly decreases H2S cardioprotective effects. In this work, we investigated how H2S pretreatment for 24 hours prevents the ischemia/reperfusion injury and promotes angiogenesis on microvascular endothelial cells following an ischemia/reperfusion protocol in vitro, using a hypoxic chamber and ischemic buffer to simulate the ischemic event. H2S preconditioning positively affected cell viability and significantly increased endothelial cell migration when treated with 1 µM H2S. Furthermore, mitochondrial function was preserved when cells were preconditioned. Since ERK1/2 phosphorylation was extremely enhanced in ischemia/reperfusion condition, we inhibited ERK both directly and indirectly to verify how H2S triggers this pathway in endothelial cells. Taken together, our data suggest that H2S treatment 24 hours before the ischemic insult protects endothelial cells from ischemia/reperfusion injury and eventually decreases myocardial injury.


Subject(s)
Endothelial Cells/drug effects , Hydrogen Sulfide/therapeutic use , Myocardial Reperfusion Injury/drug therapy , Cell Movement , Endothelial Cells/metabolism , Female , Humans , Hydrogen Sulfide/pharmacology , Male
9.
Eur J Clin Invest ; 51(2): e13441, 2021 Feb.
Article in English | MEDLINE | ID: mdl-33128260

ABSTRACT

In systemic lupus erythematosus (SLE) patients, most of the clinical manifestation share a vascular component triggered by endothelial dysfunction. Endothelial cells (ECs) activation occurs both on the arterial and venous side, and the high vascular density of kidneys accounts for the detrimental outcomes of SLE through lupus nephritis (LN). Kidney damage, in turn, exerts a negative feedback on the cardiovascular (CV) system aggravating risk factors for CV diseases such as hypertension, stroke and coronary syndrome among others. Despite the intensive investigation on SLE and LN, the role of endothelial dysfunction, as well as the underlying mechanisms, remains to be fully understood, with no specifically targeted pharmacological treatment. It is not known, in fact, if the activation pathway(s) in venous ECs are similar to the one in arterial ECs and doubts persist on the shared manifestation of microcirculation compared to macrocirculation. In this work, we aim to review the recent literature about the role of endothelial activation and dysfunction in the development of CV complications in SLE and LN patients. We, therefore, focus on arteriovenous similarities and differences and on specific pathways of great vessels compared to capillaries. Critically summarising the available data is of pivotal importance for both basic researchers and clinicians in order to develop and test new pharmacological approaches in the treatment of basic components of SLE and LN.


Subject(s)
Cardiovascular Diseases/physiopathology , Endothelium, Vascular/physiopathology , Lupus Nephritis/physiopathology , Cardiovascular Diseases/epidemiology , Heart Disease Risk Factors , Humans , Lupus Erythematosus, Systemic/physiopathology
SELECTION OF CITATIONS
SEARCH DETAIL
...