Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Nature ; 629(8010): 58-61, 2024 May.
Article in English | MEDLINE | ID: mdl-38658757

ABSTRACT

Magnetar giant flares are rare explosive events releasing up to 1047 erg in gamma rays in less than 1 second from young neutron stars with magnetic fields up to 1015-16 G (refs. 1,2). Only three such flares have been seen from magnetars in our Galaxy3,4 and in the Large Magellanic Cloud5 in roughly 50 years. This small sample can be enlarged by the discovery of extragalactic events, as for a fraction of a second giant flares reach luminosities above 1046 erg s-1, which makes them visible up to a few tens of megaparsecs. However, at these distances they are difficult to distinguish from short gamma-ray bursts (GRBs); much more distant and energetic (1050-53 erg) events, originating in compact binary mergers6. A few short GRBs have been proposed7-11, with different amounts of confidence, as candidate giant magnetar flares in nearby galaxies. Here we report observations of GRB 231115A, positionally coincident with the starburst galaxy M82 (ref. 12). Its spectral properties, along with the length of the burst, the limits on its X-ray and optical counterparts obtained within a few hours, and the lack of a gravitational wave signal, unambiguously qualify this burst as a giant flare from a magnetar in M82.

2.
Cancer Res ; 82(7): 1423-1434, 2022 04 01.
Article in English | MEDLINE | ID: mdl-35131872

ABSTRACT

Ovarian cancer is the deadliest gynecologic cancer, and novel therapeutic options are crucial to improve overall survival. Here we provide evidence that impairment of oxidative phosphorylation (OXPHOS) can help control ovarian cancer progression, and this benefit correlates with expression of the two mitochondrial master regulators PGC1α and PGC1ß. In orthotopic patient-derived ovarian cancer xenografts (OC-PDX), concomitant high expression of PGC1α and PGC1ß (PGC1α/ß) fostered a unique transcriptional signature, leading to increased mitochondrial abundance, enhanced tricarboxylic acid cycling, and elevated cellular respiration that ultimately conferred vulnerability to OXPHOS inhibition. Treatment with the respiratory chain complex I inhibitor IACS-010759 caused mitochondrial swelling and ATP depletion that consequently delayed malignant progression and prolonged the lifespan of high PGC1α/ß-expressing OC-PDX-bearing mice. Conversely, low PGC1α/ß OC-PDXs were not affected by IACS-010759, thus pinpointing a selective antitumor effect of OXPHOS inhibition. The clinical relevance of these findings was substantiated by analysis of ovarian cancer patient datasets, which showed that 25% of all cases displayed high PGC1α/ß expression along with an activated mitochondrial gene program. This study endorses the use of OXPHOS inhibitors to manage ovarian cancer and identifies the high expression of both PGC1α and ß as biomarkers to refine the selection of patients likely to benefit most from this therapy. SIGNIFICANCE: OXPHOS inhibition in ovarian cancer can exploit the metabolic vulnerabilities conferred by high PGC1α/ß expression and offers an effective approach to manage patients on the basis of PGC1α/ß expression.


Subject(s)
Ovarian Neoplasms , Oxidative Phosphorylation , Peroxisome Proliferator-Activated Receptor Gamma Coactivator 1-alpha , RNA-Binding Proteins , Animals , Female , Humans , Mice , Mitochondria/metabolism , Ovarian Neoplasms/drug therapy , Ovarian Neoplasms/genetics , Ovarian Neoplasms/metabolism , Oxidation-Reduction , Peroxisome Proliferator-Activated Receptor Gamma Coactivator 1-alpha/metabolism , RNA-Binding Proteins/metabolism
3.
Cancers (Basel) ; 13(24)2021 Dec 16.
Article in English | MEDLINE | ID: mdl-34944949

ABSTRACT

RalGPS2 is a Ras-independent Guanine Nucleotide Exchange Factor for RalA GTPase that is involved in several cellular processes, including cytoskeletal organization. Previously, we demonstrated that RalGPS2 also plays a role in the formation of tunneling nanotubes (TNTs) in bladder cancer 5637 cells. In particular, TNTs are a novel mechanism of cell-cell communication in the tumor microenvironment, playing a central role in cancer progression and metastasis formation. However, the molecular mechanisms involved in TNTs formation still need to be fully elucidated. Here we demonstrate that mid and high-stage bladder cancer cell lines have functional TNTs, which can transfer mitochondria. Moreover, using confocal fluorescence time-lapse microscopy, we show in 5637 cells that TNTs mediate the trafficking of RalA protein and transmembrane MHC class III protein leukocyte-specific transcript 1 (LST1). Furthermore, we show that RalGPS2 is essential for nanotubes generation, and stress conditions boost its expression both in 5637 and HEK293 cell lines. Finally, we prove that RalGPS2 interacts with Akt and PDK1, in addition to LST1 and RalA, leading to the formation of a complex that promotes nanotubes formation. In conclusion, our findings suggest that in the tumor microenvironment, RalGPS2 orchestrates the assembly of multimolecular complexes that drive the formation of TNTs.

SELECTION OF CITATIONS
SEARCH DETAIL
...