Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
ACS Omega ; 9(26): 27798-27831, 2024 Jul 02.
Article in English | MEDLINE | ID: mdl-38973846

ABSTRACT

API (American Petroleum Institute) steels are the most employed metal alloys in the oil industry due to their outstanding mechanical properties; however, their protection is considered as an imperative matter because of their corrosion damage vulnerability when exposed to different surroundings that provoke a rate increase in the concomitant redox reactions. This problematic situation becomes more relevant when the generation and/or use of one or various aqueous corrosive environments occur, in addition to process conditions, the result of which is extremely difficult to be controlled. For these reasons, the internal and external protection of exposed metallic systems are considered as a fundamental concern, where internal corrosion is often controlled through the addition of corrosion inhibitors (CIs). The present review analyzes researchers' contributions in the last years to the study and evaluation of CIs for API steel in different corrosive media featuring HCl, H2SO4, H3NSO3H, CO2, H2S, NaCl, and production water under different temperature and flow conditions. Different CIs derived from plant extracts, drugs, nanoparticles, or ionic liquids, mainly destined for acid media, were found. Throughout the review, an exhaustive analysis of inhibition process results is carried out based on gravimetric and/or electrochemical techniques that consider the weight loss of the metallic material and electrical behavior (current density, resistance, capacitance, frequency, impedance, etc.). Likewise, the results of computational analyses and those of surface analysis techniques were taken into account to reinforce the study of CIs.

2.
Polymers (Basel) ; 16(2)2024 Jan 22.
Article in English | MEDLINE | ID: mdl-38276707

ABSTRACT

The present work reports on an empirical mathematical expression for predicting the digital porosity (DP) of electrospun nanofiber veils, employing emulsions of poly(vinyl alcohol) (PVOH) and olive and orange oils. The electrospun nanofibers were analyzed by scanning electron microscopy (SEM), observing orientation and digital porosity (DP) in the electrospun veils. To determine the DP of the veils, the SEM micrographs were transformed into a binary system, and then the threshold was established, and the nanofiber solid surfaces were emphasized. The relationship between the experimental results and those obtained with the empirical mathematical expression displayed a correlation coefficient (R2) of 0.97 by employing threshold II. The mathematical expression took into account experimental variables such as the nanofiber humidity and emulsion conductivity prior to electrospinning, in addition to the corresponding operation conditions. The results produced with the proposed expression showed that the prediction of the DP of the electrospun veils was feasible with the considered thresholds.

3.
Int J Mol Sci ; 24(7)2023 Mar 27.
Article in English | MEDLINE | ID: mdl-37047266

ABSTRACT

In the present research work, the temperature effect on the corrosion inhibition process of API 5L X60 steel in 1 M H2SO4 by employing three vinylimidazolium poly(ionic liquid)s (PILs) was studied by means of electrochemical techniques, surface analysis and computational simulation. The results revealed that the maximal inhibition efficiency (75%) was achieved by Poly[VIMC4][Im] at 308 K and 175 ppm. The PILs showed Ecorr displacements with respect to the blank from -14 mV to -31 mV, which revealed the behavior of mixed-type corrosion inhibitors (CIs). The steel micrographs, in the presence and absence of PILs, showed less surface damage in the presence of PILs, thus confirming their inhibiting effect. The computational studies of the molecular orbitals and molecular electrostatic potential of the monomers suggested that the formation of a protecting film could be mainly due to the nitrogen and oxygen heteroatoms present in each structure.


Subject(s)
Ionic Liquids , Temperature , Steel/chemistry , Corrosion , Carbon , Acids
4.
ACS Omega ; 7(42): 37807-37824, 2022 Oct 25.
Article in English | MEDLINE | ID: mdl-36312349

ABSTRACT

A corrosion inhibition mechanism of API 5L X60 steel exposed to 1.0 M H2SO4 was proposed from the evaluation of three vinylalkylimidazolium poly(ionic liquids) (PILs), employing electrochemical and surface analysis techniques. The synthesized PILs were classified as mixed-type inhibitors whose surface adsorption was promoted mainly by bromide and imidazolate ions, which along with vinylimidazolium cations exerted a resistive effect driven by a charge transfer process by means of a protective PIL film with maximal efficiency of 85% at 175 ppm; the steel surface displayed less surface damage due to the formation of metal-PIL complex compounds.

5.
Turk J Chem ; 44(1): 180-193, 2020.
Article in English | MEDLINE | ID: mdl-33488151

ABSTRACT

This paper aimed at implementing a treatment system for polluted water with textile dyes, starting with a photocatalytic decomposition process using sunlight as a source of energy and continuing with a bacterial biodegradation process, in order to reach degradation percentages higher than those obtained using only one of the processes mentioned above. When water treatment with the dye in the combined system was over, an acute ecotoxicity test was performed to make sure that toxic metabolites were not produced due to biodegradation. Solophenyl Blue azoic dye, and Erionyl Blue and Terasil Blue anthraquinone dye-colored solutions were treated with the Pd/Al 80 Ce 10 Zr 10 catalyst in a solar collector for the photocatalytic process. On the other hand, the waste dye, which was obtained from photocatalysis with a bacterial consortium from polluted areas by metals and hydrocarbons in aerobic conditions, was inoculated for biodegradation. Biodegradation was obtained for the dyes after both processes as 90.91% for the Solophenyl Blue azoic dye, and 87.80% and 87.94%, respectively, for the Erionyl Blue and Terasil Blue anthraquinone dyes. After the degradation processes, it was proven, via an ecotoxicity test with Daphnia magna , that toxic metabolites had not been produced.

6.
Microbiol Res ; 228: 126308, 2019 Nov.
Article in English | MEDLINE | ID: mdl-31430656

ABSTRACT

Mine tailings represent a serious environmental pollution problem and techniques such as phytoremediation using plant growth-promoting bacteria become an important solution due to their environmentally friendly nature. The study performed using Brassica juncea L. (Indian mustard) and plant growth-promoting bacteria such as Serratia K120, Enterobacter K125, Serratia MC107, Serratia MC119 and Enterobacter MC156 showed that plant roots colonization favored the transfer of metals to the plant, mainly Al and Pb from the 8 analyzed metals with bioaccumulation factors >1 for Al, Pb, Cd and Fe obtained with Serratia K120, Enterobacter K125, Serratia MC107, Serratia MC119 and Enterobacter MC156. Based on these results, this system could be used in phytoextraction processes whereas Enterobacter MC156 reduced the bioaccumulation of metals, indicating the possible phytostabilization of metals present in mine tailings.


Subject(s)
Bacterial Physiological Phenomena , Environmental Restoration and Remediation , Mustard Plant/microbiology , Plant Development , Bacteria/classification , Biodegradation, Environmental , Hydrogen-Ion Concentration , Metals/metabolism , Mexico , Mustard Plant/growth & development , Plant Roots/microbiology , Soil Microbiology , Soil Pollutants
7.
Nano Converg ; 5(1): 21, 2018 Dec.
Article in English | MEDLINE | ID: mdl-30148042

ABSTRACT

Benzene, toluene, ethylbenzene, and p-xylene (BTEX) are hazardous volatile organic compounds mostly released from fuel combustion, paint gas emissions, and biomass burning. In this work, it is studied the BTEX sorption influence on the surface reactivity of a new kind of nanoporous composite, prepared via an in situ functionalization of SBA-15 with a Mg-Al calcined hydrotalcite (HTC). During its preparation, Mg/Al mixed oxides are indeed formed and dispersed on the SBA-15 surface with non-blockage porosity. Furthermore, the physicochemical surface properties are exalted from its precursors and it is synergistically favorable for the BTEX sorption at low pressure and temperature.

SELECTION OF CITATIONS
SEARCH DETAIL
...