Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 27
Filter
Add more filters










Publication year range
1.
Curr Res Physiol ; 6: 100105, 2023.
Article in English | MEDLINE | ID: mdl-38107788

ABSTRACT

Multiple pregnancy remains a relatively common occurrence, but it is associated with increased risks of adverse outcomes for the mother and her babies and presents unique challenges to healthcare providers. This review will briefly discuss multiple pregnancies, their aetiology and their problems, including preterm birth, before reviewing the processes leading to normal labour onset and how they may be different in a multiple pregnancy. The mechanisms by which mechanical factors i.e., uterine distension or 'stretch' contribute to uterine excitability and the timing of labour onset will be the major focus, and how over distention may pre-dispose multiple pregnancies to preterm birth. This includes current thinking around the role of mechano (stretch) sensitive ion channels in the myometrium and changes to other important regulators of excitability and contraction which have been identified from studies using in vitro and in vivo models of uterine stretch. Physiological stimuli arising from the fetus(es) and placenta(s) will also be discussed. In reviewing what we know about the myometrium in multiple pregnancy in humans, the focus will be on twin pregnancy as it is the most common type of multiple pregnancy and has been the most studied.

2.
Nanoscale Adv ; 5(7): 1870-1889, 2023 Mar 28.
Article in English | MEDLINE | ID: mdl-36998665

ABSTRACT

The World Health Organisation (WHO) estimates 15 million babies worldwide are born preterm each year, with 1 million infant mortalities and long-term morbidity in survivors. Whilst the past 40 years have provided some understanding in the causes of preterm birth, along with development of a range of therapeutic options, notably prophylactic use of progesterone or uterine contraction suppressants (tocolytics), the number of preterm births continues to rise. Existing therapeutics used to control uterine contractions are restricted in their clinical use due to pharmacological drawbacks such as poor potency, transfer of drugs to the fetus across the placenta and maternal side effects from activity in other maternal systems. This review focuses on addressing the urgent need for the development of alternative therapeutic systems with improved efficacy and safety for the treatment of preterm birth. We discuss the application of nanomedicine as a viable opportunity to engineer pre-existing tocolytic agents and progestogens into nanoformulations, to improve their efficacy and address current drawbacks to their use. We review different nanomedicines including liposomes, lipid-based carriers, polymers and nanosuspensions highlighting where possible, where these technologies have already been exploited e.g. liposomes, and their significance in improving the properties of pre-existing therapeutic agents within the field of obstetrics. We also highlight where active pharmaceutical agents (APIs) with tocolytic properties have been used for other clinical indications and how these could inform the design of future therapeutics or be repurposed to diversify their application such as for use in preterm birth. Finally we outline and discuss the future challenges.

3.
Annu Rev Pharmacol Toxicol ; 63: 471-489, 2023 Jan 20.
Article in English | MEDLINE | ID: mdl-36151050

ABSTRACT

While there is not a wide range of pregnancy-specific drugs, there are some very specific high-risk areas of obstetric care for which unique pharmacological approaches have been established. In preterm birth, labor induction and augmentation, and the management of postpartum hemorrhage, these pharmacological approaches have become the bedrock in managing some of the most common and problematic areas of antenatal and intrapartum care. In this review, we summarize the existing established and emerging evidence that supports and broadens these pharmacological approaches to obstetric management and its impact on clinical practice. It is clear that existing therapeutics are limited. They have largely been developed from our knowledge of the physiology of the myometrium and act on hormonal receptors and their signaling pathways or on ion channels influencing excitability. Newer drugs in development are mostly refinements of these two approaches, but novel agents from plants and improved formulations are also discussed.


Subject(s)
Delivery, Obstetric , Labor, Obstetric , Postpartum Hemorrhage , Premature Birth , Female , Humans , Infant, Newborn , Pregnancy , Uterine Contraction/drug effects , Postpartum Hemorrhage/drug therapy , Labor, Obstetric/drug effects
4.
J Hazard Mater ; 433: 128770, 2022 07 05.
Article in English | MEDLINE | ID: mdl-35364529

ABSTRACT

Field-weathered crude oil-containing soils have a residual concentration of hydrocarbons with complex chemical structure, low solubility, and high viscosity, often poorly amenable to microbial degradation. Hydrogen peroxide (H2O2)-based oxidation can generate oxygenated compounds that are smaller and/or more soluble and thus increase petroleum hydrocarbon biodegradability. In this study, we assessed the efficacy of H2O2-based oxidation under unsaturated soil conditions to promote biodegradation in a field-contaminated and weathered soil containing high concentrations of total petroleum hydrocarbons (25200 mg TPH kg-1) and total organic carbon (80900 mg TOC kg-1). Microcosms amended with three doses of 48 g H2O2 kg-1 soil (unactivated or Fe2+-activated) or 24 g sodium percarbonate kg-1 soil and nutrients did not show substantial TPH changes during the experiment. However, 7.6-41.8% of the TOC concentration was removed. Furthermore, production of DOC was enhanced and highest in the microcosms with oxidants, with approximately 20-40-fold DOC increase by the end of incubation. In the absence of oxidants, biostimulation led to > 50% TPH removal in 42 days. Oxidants limited TPH biodegradation by diminishing the viable concentration of microorganisms, altering the composition of the soil microbial communities, and/or creating inhibitory conditions in soil. Study's findings underscore the importance of soil characteristics and petroleum hydrocarbon properties and inform on potential limitations of combined H2O2 oxidation and biodegradation in weathered soils.


Subject(s)
Petroleum , Soil Pollutants , Biodegradation, Environmental , Hydrocarbons/metabolism , Hydrogen Peroxide , Oxidants , Peroxides , Petroleum/metabolism , Soil/chemistry , Soil Microbiology , Soil Pollutants/metabolism
5.
Methods Mol Biol ; 2384: 29-42, 2022.
Article in English | MEDLINE | ID: mdl-34550566

ABSTRACT

Traditional contractility assays using an organ bath setup consist of several chambers (or baths) perfused with temperature-controlled, oxygenated physiological saline. Strips or rings of tissue (usually smooth or cardiac muscle) are mounted within the organ bath between a fixed hook and an isometric force transducer. The contraction force is recorded by the transducer and different parameters of contraction are analyzed. Different experimental protocols can be performed to investigate the effect of drugs and reagents on tissue contractility to investigate tissue physiology or determine the in vivo potential of novel pharmaceutical compounds. Here, the application of a modified organ bath to measure ex vivo contractions of small strips of human uterine smooth muscle (myometrium) is described, as well as protocols to study the effect of oxytocin and uterine relaxants on contraction.


Subject(s)
Myometrium , Female , Humans , In Vitro Techniques , Oxytocin , Uterine Contraction , Uterus
6.
Front Physiol ; 12: 751008, 2021.
Article in English | MEDLINE | ID: mdl-34867456

ABSTRACT

In smooth muscle tissues, calcium-activated chloride channels (CaCC) provide the major anionic channel. Opening of these channels leads to chloride efflux and depolarization of the myocyte membrane. In this way, activation of the channels by a rise of intracellular [Ca2+], from a variety of sources, produces increased excitability and can initiate action potentials and contraction or increased tone. We now have a good mechanistic understanding of how the channels are activated and regulated, due to identification of TMEM16A (ANO1) as the molecular entity of the channel, but key questions remain. In reviewing these channels and comparing two distinct smooth muscles, myometrial and vascular, we expose the differences that occur in their activation mechanisms, properties, and control. We find that the myometrium only expresses "classical," Ca2+-activated, and voltage sensitive channels, whereas both tonic and phasic blood vessels express classical, and non-classical, cGMP-regulated CaCC, which are voltage insensitive. This translates to more complex activation and regulation in vascular smooth muscles, irrespective of whether they are tonic or phasic. We therefore tentatively conclude that although these channels are expressed and functionally important in all smooth muscles, they are probably not part of the mechanisms governing phasic activity. Recent knockdown studies have produced unexpected functional results, e.g. no effects on labour and delivery, and tone increasing in some but decreasing in other vascular beds, strongly suggesting that there is still much to be explored concerning CaCC in smooth muscle.

7.
Front Physiol ; 12: 627260, 2021.
Article in English | MEDLINE | ID: mdl-33633588

ABSTRACT

The scale of the SARS-CoV-2 pandemic has thrust a spotlight on the sex-based differences in response to viral diseases; morbidity and mortality are greater in men than women. We outline the mechanisms by which being female offers a degree of protection from COVID19, that persists even when confounders such as comorbidities are considered. The physiological and immunological mechanisms are fascinating and range from incomplete X chromosome inactivation of immune genes, a crucial role for angiotensin converting enzyme 2 (ACE2), and regulation of both immune activity and ACE2 by sex steroids. From this flows understanding of why lung and other organs are more susceptible to COVID19 damage in men, and how their distinct immunological landscapes need to be acknowledged to guide prognosis and treatment. Pregnancy, menopause, and hormone replacement therapy bring changed hormonal environments and the need for better stratification in COVID19 studies. We end by noting clinical trials based on increasing estrogens or progesterone or anti-testosterone drugs; excellent examples of translational physiology.

8.
Mol Biol Rep ; 48(1): 413-423, 2021 Jan.
Article in English | MEDLINE | ID: mdl-33386589

ABSTRACT

Accurate quantification of quantitative PCR (qPCR) data requires a set of stable reference genes (RGs) for normalisation. Despite its importance to mechanistic studies, no evaluation of RG stability has been conducted for pregnant human myometrium. A systematic search of the literature was performed to identify the most used RGs in human myometrial gene expression studies. The stability of these genes, and others, was then evaluated using geNorm and NormFinder algorithms, in samples of myometrium from singleton or twin pregnancies (n = 7 per group) delivering at term or preterm. The most frequently cited RGs were GAPDH, ACTB, B2M and 18s. There was strong agreement between algorithms on the most and least stable genes: Both indicated CYC1, YWHAZ and ATP5B were the most stably expressed. Despite being some of the most used RGs, B2M, 18s and ACTB expression was least stable and was too variable for use as accurate normalisation factors. Pairwise variation analysis determined that the optimal number of RGs for accurate normalisation is two. Validation of the choice of RGs by comparing relative expression of oxytocin receptors (OXTR) using the least stable 18s and B2M, with the most stable, CYC1 and YWHAZ, erroneously demonstrated significantly increased OXTR expression in myometrium in singleton pregnancies compared to twins. This study demonstrates the importance of appropriate RG selection for accurate quantification of relative expression in pregnant human myometrium qPCR studies. For normalisation, the geometric mean of CYC1 and YWHAZ or ATP5B is suggested. The use of ACTB, 18s and B2M, is not recommended.


Subject(s)
14-3-3 Proteins/genetics , Mitochondrial Proton-Translocating ATPases/genetics , Myometrium/metabolism , Real-Time Polymerase Chain Reaction/methods , Reference Standards , Female , Gene Expression/genetics , Genetic Techniques , Humans , Pregnancy
9.
Annu Rev Physiol ; 83: 331-357, 2021 02 10.
Article in English | MEDLINE | ID: mdl-33158376

ABSTRACT

We address advances in the understanding of myometrial physiology, focusing on excitation and the effects of gestation on ion channels and their relevance to labor. This review moves through pioneering studies to exciting new findings. We begin with the myometrium and its myocytes and describe how excitation might initiate and spread in this myogenic smooth muscle. We then review each of the ion channels in the myometrium: L- and T-type Ca2+ channels, KATP (Kir6) channels, voltage-dependent K channels (Kv4, Kv7, and Kv11), twin-pore domain K channels (TASK, TREK), inward rectifier Kir7.1, Ca2+-activated K+ channels with large (KCNMA1, Slo1), small (KCNN1-3), and intermediate (KCNN4) conductance, Na-activated K channels (Slo2), voltage-gated (SCN) Na+ and Na+ leak channels, nonselective (NALCN) channels, the Na K-ATPase, and hyperpolarization-activated cation channels. We finish by assessing how three key hormones- oxytocin, estrogen, and progesterone-modulate and integrate excitability throughout gestation.


Subject(s)
Ion Channels/physiology , Myometrium/physiology , Uterus/physiology , Animals , Female , Humans , Membrane Proteins/physiology , Myocytes, Smooth Muscle/physiology , Pregnancy
10.
Reprod Sci ; 27(8): 1570-1579, 2020 08.
Article in English | MEDLINE | ID: mdl-32430707

ABSTRACT

Magnesium sulfate is used as a tocolytic, but clinical efficacy has been seriously questioned. Our objective was to use controlled ex vivo conditions and known pregnancy stages, to investigate how 2 key factors, hormones and gestation, affect magnesium's tocolytic ability. We hypothesized that these factors could underlie the varying clinical findings around magnesium's efficacy. Myometrial strips were obtained from nonpregnant (n = 10), mid-pregnant (n = 12), and term-pregnant (n = 11) mouse uterus. The strips were mounted in organ baths superfused with oxygenated physiological saline at pH 7.4 and 37 °C. The effect of different concentrations of MgSO4 (2-20 mM) was examined on spontaneous and oxytocin-induced (0.5-1 nM) contractions. Contractile properties (amplitude, frequency, and area under the curve) were measured before and after application of magnesium. Magnesium sulfate had a dose-dependent inhibitory effect on both spontaneous and oxytocin-induced contractions but was less effective in the presence of oxytocin. In spontaneous contractions, magnesium was more potent as gestation progressed (P < .0001). In the presence of oxytocin, however, there were no significant gestational differences in its effects on contraction. The rapid onset and reversal of magnesium's effects suggest an extracellular action on calcium entry. Taken together, we conclude that magnesium's actions are influenced by both gestational state and hormones, such that, at least in mice, it is least effective in early gestation with oxytocin present and most effective at term in the absence of oxytocin. That magnesium is least effective preterm and oxytocin decreases its effectiveness throughout gestation, may explain its disappointing clinical effects as a tocolytic.


Subject(s)
Gonadal Steroid Hormones/physiology , Magnesium Sulfate/pharmacology , Myometrium/physiology , Oxytocin/pharmacology , Uterine Contraction/physiology , Animals , Dose-Response Relationship, Drug , Female , Mice , Myometrium/drug effects , Organ Culture Techniques , Pregnancy , Uterine Contraction/drug effects
11.
PLoS One ; 15(1): e0227882, 2020.
Article in English | MEDLINE | ID: mdl-31951633

ABSTRACT

Preterm birth is recognized as the primary cause of infant mortality worldwide. Twin pregnancies are significantly more at risk of preterm birth than singleton pregnancies. A greater understanding of why this is and better modes of treatment and prevention are needed. Key to this is determining the differing pathophysiological mechanisms of preterm birth in twins, including the role of the myometrium and premature uterine contraction. We performed RNA sequencing (RNA-Seq) of human myometrium from singleton and twin pregnancies at term (> 37+0 weeks) and preterm (< 37+0 weeks), collected during pre-labour Caesarean Section. RNA-Seq libraries were prepared from polyA-selected RNA and sequenced on the Illumina HiSeq 4000 platform. Differentially expressed genes (DEGs), GO (Gene Ontology) and KEGG (Kyoto Encyclopedia of Genes and Genomes) pathway enrichment were conducted using R software. Significance was determined with a false discovery rate-adjusted P value of <0.05. Only 3 DEGs were identified between gestational age-matched singleton and twin myometrium and only 1 DEG identified between singleton term and twin preterm tissues. Comparison of singleton preterm myometrium with twin term myometrium however, revealed 75 down-regulated and 24 up-regulated genes in twin myometrium. This included genes associated with inflammation and immune response, T cell maturation and differentiation and steroid biosynthesis. GO and KEGG enrichment analyses for biologically relevant processes and functions also revealed several terms related to inflammation and immune response, as well as cytokine-cytokine receptor interaction and chemokine receptor signalling. Data indicate that little or no differences exist in the transcriptome of singleton and twin myometrium when matched for gestational age. The significant up- and down-regulation of genes identified between preterm singleton and twin myometrium at term may point to transcriptome changes associated with the chronic levels of uterine stretch in twin pregnancy or genes associated with the myometrium transitioning to labour onset.


Subject(s)
Immunity, Innate/genetics , Myometrium/metabolism , Pregnancy, Twin/genetics , Premature Birth/genetics , Adult , Cesarean Section , Female , Gene Expression Regulation/genetics , Humans , Infant , Infant, Newborn , Inflammation/genetics , Myometrium/pathology , Pregnancy , Premature Birth/pathology , Sequence Analysis, RNA , Transcriptome/genetics
12.
Nanoscale Adv ; 2(12): 5572-5577, 2020 Dec 15.
Article in English | MEDLINE | ID: mdl-36133871

ABSTRACT

Solid lipid nanoparticles (SLNs) have proved to be effective nanocarriers with many advantages over other non-lipid-based systems. The development of new SLN formulations is often hindered through poor drug loading capacity and time-consuming optimisation of lipid/stabiliser combinations. One challenge in the development of new SLN formulations is understanding the complex interactions between amphiphilic stabilisers and hydrophobic lipids; the nature of these interactions can significantly impact SLN properties, including the internal polarity within the nanoparticle core. Herein, we report the use of pyrene to probe the internal lipid microenvironment inside SLNs. We investigate the effect of using different poloxamer stabilisers on the internal polarity of SLNs formed using the common solid lipid, Compritol 888 ATO. We show that the polarity of the internal lipid environment is modified by the length of the poly(propylene oxide) (PPO) block of the poloxamer stabiliser, with longer PPO blocks producing SLNs with less polar lipid cores. Blending of stabilisers could also be used to tune the polarity of the core lipid environment, which may allow for adjusting the polarity of the lipid to assist the loading of different therapeutics.

13.
Reprod Sci ; : 1933719119828089, 2019 Feb 17.
Article in English | MEDLINE | ID: mdl-30773125

ABSTRACT

Magnesium sulfate is used as a tocolytic, but clinical efficacy has been seriously questioned. Our objective was to use controlled ex vivo conditions and known pregnancy stages, to investigate how 2 key factors, hormones and gestation, affect magnesium's tocolytic ability. We hypothesized that these factors could underlie the varying clinical findings around magnesium's efficacy. Myometrial strips were obtained from nonpregnant (n = 10), mid-pregnant (n = 12), and term-pregnant (n = 11) mouse uterus. The strips were mounted in organ baths superfused with oxygenated physiological saline at pH 7.4 and 37°C. The effect of different concentrations of MgSO4 (2-20 mM) was examined on spontaneous and oxytocin-induced (0.5-1 nM) contractions. Contractile properties (amplitude, frequency, and area under the curve) were measured before and after application of magnesium. Magnesium sulfate had a dose-dependent inhibitory effect on both spontaneous and oxytocin-induced contractions but was less effective in the presence of oxytocin. In spontaneous contractions, magnesium was more potent as gestation progressed ( P < .0001). In the presence of oxytocin, however, there were no significant gestational differences in its effects on contraction. The rapid onset and reversal of magnesium's effects suggest an extracellular action on calcium entry. Taken together, we conclude that magnesium's actions are influenced by both gestational state and hormones, such that, at least in mice, it is least effective in early gestation with oxytocin present and most effective at term in the absence of oxytocin. That magnesium is least effective preterm and oxytocin decreases its effectiveness throughout gestation, may explain its disappointing clinical effects as a tocolytic.

14.
J Vis Exp ; (131)2018 01 26.
Article in English | MEDLINE | ID: mdl-29443077

ABSTRACT

Discovery and characterization of novel pharmaceutical compounds or biochemical probes rely on robust and physiologically relevant assay systems. We describe methods to measure ex vivo myometrium contractility. This assay can be used to investigate factors and molecules involved in the modulation of myometrial contraction and to determine their excitatory or inhibitory actions, and hence their therapeutic potential in vivo. Biopsies are obtained from women undergoing cesarean section delivery with informed consent. Fine strips of myometrium are dissected, clipped and attached to a force transducer within 1 mL organ baths superfused with physiological saline solution at 37 °C. Strips develop spontaneous contractions within 2-3 h under set tension and remain stable for many hours (>6 h). Strips can also be stimulated to contract such as by the endogenous hormones, oxytocin and vasopressin, which cause concentration-dependent modulation of contraction frequency, force and duration, to more closely resemble contractions in labor. Hence, the effect of known and novel drug leads can be tested on spontaneous and agonist-induced contractions. This protocol specifically details how this assay can be used to determine the potency of known and novel agents by measuring their effects on various parameters of human myometrial contraction. We use the oxytocin- and V1a receptor antagonists, atosiban and SR49059 as examples of known compounds which inhibit oxytocin- and vasopressin-induced contractions, and demonstrate how this method can be used to complement and validate pharmacological data obtained from cell-based assays to aid drug development. The effects of novel agonists in comparison to oxytocin and vasopressin can also be characterized. Whilst we use the example of the oxytocin/ vasopressin system, this method can also be used to study other receptors and ion channels that play a role in uterine contraction and relaxation to advance the understanding of human uterine physiology and pathophysiology.


Subject(s)
Drug Discovery/methods , Myometrium/blood supply , Myometrium/drug effects , Oxytocin/pharmacology , Uterine Contraction/drug effects , Female , Humans , Uterine Contraction/physiology
15.
Sci Signal ; 10(508)2017 Dec 05.
Article in English | MEDLINE | ID: mdl-29208680

ABSTRACT

Oxytocin and vasopressin mediate various physiological functions that are important for osmoregulation, reproduction, cardiovascular function, social behavior, memory, and learning through four G protein-coupled receptors that are also implicated in high-profile disorders. Targeting these receptors is challenging because of the difficulty in obtaining ligands that retain selectivity across rodents and humans for translational studies. We identified a selective and more stable oxytocin receptor (OTR) agonist by subtly modifying the pharmacophore framework of human oxytocin and vasopressin. [Se-Se]-oxytocin-OH displayed similar potency to oxytocin but improved selectivity for OTR, an effect that was retained in mice. Centrally infused [Se-Se]-oxytocin-OH potently reversed social fear in mice, confirming that this action was mediated by OTR and not by V1a or V1b vasopressin receptors. In addition, [Se-Se]-oxytocin-OH produced a more regular contraction pattern than did oxytocin in a preclinical labor induction and augmentation model using myometrial strips from cesarean sections. [Se-Se]-oxytocin-OH had no activity in human cardiomyocytes, indicating a potentially improved safety profile and therapeutic window compared to those of clinically used oxytocin. In conclusion, [Se-Se]-oxytocin-OH is a novel probe for validating OTR as a therapeutic target in various biological systems and is a promising new lead for therapeutic development. Our medicinal chemistry approach may also be applicable to other peptidergic signaling systems with similar selectivity issues.


Subject(s)
Anxiety/drug therapy , Receptors, Oxytocin/agonists , Animals , COS Cells , Chemistry, Pharmaceutical , Chlorocebus aethiops , Conditioning, Psychological/drug effects , Female , HEK293 Cells , Humans , Infusions, Intraventricular , Ligands , Male , Mice , Rats
16.
Sci Rep ; 7: 41002, 2017 02 01.
Article in English | MEDLINE | ID: mdl-28145450

ABSTRACT

Characterisation of G protein-coupled receptors (GPCR) relies on the availability of a toolbox of ligands that selectively modulate different functional states of the receptors. To uncover such molecules, we explored a unique strategy for ligand discovery that takes advantage of the evolutionary conservation of the 600-million-year-old oxytocin/vasopressin signalling system. We isolated the insect oxytocin/vasopressin orthologue inotocin from the black garden ant (Lasius niger), identified and cloned its cognate receptor and determined its pharmacological properties on the insect and human oxytocin/vasopressin receptors. Subsequently, we identified a functional dichotomy: inotocin activated the insect inotocin and the human vasopressin V1b receptors, but inhibited the human V1aR. Replacement of Arg8 of inotocin by D-Arg8 led to a potent, stable and competitive V1aR-antagonist ([D-Arg8]-inotocin) with a 3,000-fold binding selectivity for the human V1aR over the other three subtypes, OTR, V1bR and V2R. The Arg8/D-Arg8 ligand-pair was further investigated to gain novel insights into the oxytocin/vasopressin peptide-receptor interaction, which led to the identification of key residues of the receptors that are important for ligand functionality and selectivity. These observations could play an important role for development of oxytocin/vasopressin receptor modulators that would enable clear distinction of the physiological and pathological responses of the individual receptor subtypes.


Subject(s)
Antidiuretic Hormone Receptor Antagonists/metabolism , Neuropeptides/metabolism , Receptors, Vasopressin/agonists , Amino Acid Substitution , Animals , Antidiuretic Hormone Receptor Antagonists/isolation & purification , Ants , DNA Mutational Analysis , Humans , Neuropeptides/genetics , Neuropeptides/isolation & purification , Protein Binding , Recombinant Proteins/genetics , Recombinant Proteins/isolation & purification , Recombinant Proteins/metabolism
17.
Am J Obstet Gynecol ; 215(6): 789.e1-789.e9, 2016 Dec.
Article in English | MEDLINE | ID: mdl-27555315

ABSTRACT

BACKGROUND: Preterm birth at <37 weeks of gestation is the most common and costly complication of pregnancy and remains the leading cause of neonatal morbidity, death, and reduced achievement in surviving infants. Magnesium sulfate is 1 class of tocolytics for threatened preterm labor; however, its clinical efficacy has been questioned. Twin pregnancies are at increased risk of preterm delivery compared with singleton gestations, which suggests that there is twin-specific risk to preterm delivery in twins. The prevention strategies that are applied to singleton pregnancies, however, have not been shown to be effective in twin pregnancies. OBJECTIVE: The purpose of this study was to compare the relaxant effect of magnesium sulfate on spontaneous and oxytocin-augmented contractions of human myometrium from singleton and twin pregnancies and to examine whether the effect of oxytocin on magnesium sulfate's potency could be reversed with the use of the oxytocin receptor antagonist, atosiban. STUDY DESIGN: Myometrium was obtained at the time of prelabor cesarean section (36-40 weeks of gestation) from women with singleton (n=23) or twin (n=12) pregnancy. Isometric tension recordings were made on myometrial strips that were mounted in organ baths that were superfused with physiologic saline solution. Strips were exposed to rising concentrations of magnesium sulfate, and the effect on spontaneous contractions or stimulated with oxytocin (0.5 nmol/L) and in the presence or absence of atosiban (100 nmol/L) was recorded. The contractile characteristics after each application of magnesium sulfate, which included amplitude of contraction and activity integral, were measured. Concentration-response curves were fitted with the use of nonlinear regression and comparison of the negative logarithm of the 50% reduction in activity values. RESULTS: Magnesium sulfate exerted an equal concentration-dependent inhibitory effect on spontaneous myometrial contractions from both singleton and twin myometrium (P>.05). The application of oxytocin produced a significant rightward shift in the concentration-response curves (P<.0001), but no differences were found between pregnancy groups (P>.05). The addition of atosiban shifted concentration-response curves significantly back to the left for amplitude of contraction and activity integral in singletons (P<.0001). However, only activity integral was significantly reversed in twins (P<.01). CONCLUSION: Magnesium sulfate is equipotent in suppressing contractions in singleton and twin myometrium. Oxytocin (0.5 nmol/L) significantly reduces the tocolytic potency of magnesium sulfate, which may explain, in part, magnesium sulfate's poor efficacy in vivo; however, this can be reversed partially by the use of an oxytocin receptor antagonist. Combination tocolysis that involves oxytocin receptor antagonists requires further investigation.


Subject(s)
Magnesium Sulfate/pharmacology , Myometrium/drug effects , Pregnancy, Twin , Tocolytic Agents/pharmacology , Uterine Contraction/drug effects , Vasotocin/analogs & derivatives , Adult , Cesarean Section , Female , Humans , In Vitro Techniques , Pregnancy , Receptors, Oxytocin/antagonists & inhibitors , Vasotocin/pharmacology
18.
J Ethnopharmacol ; 179: 83-91, 2016 Feb 17.
Article in English | MEDLINE | ID: mdl-26721222

ABSTRACT

ETHNOPHARMACOLOGICAL RELEVANCE: People living in the tropical rain forest of South-Western Nigeria use Rinorea dentata (P. Beauv.) Kuntze (Violaceae) in ethno-veterinary medicine to facilitate parturition. There are no evidence-based pharmacological investigations for the uterotonic activity of this plant. AIMS OF STUDY: (i) Collection of data about the ethnopharmacological uses of R. dentata and evaluation of its uses and applications in health care; (ii) determining potential uterotonic effects in vitro, and (iii) chemical characterization of R. dentata, which is a member of the Violaceae family known to express circular cystine-knot peptides, called cyclotides. MATERIALS AND METHODS: The ethnopharmacological use of R. dentata in settlement camps within the area J4 of Omo forest has been investigated by semi-structured questionnaires and open interviews. Use index analysis has been performed by seven quantitative statistical models. Respondents' claim on the beneficial ethno-veterinary application of the plant to aid parturition has been investigated in vitro by myometrial contractility organ bath assays. The bioactive plant extract was screened by chemical derivatization and mass spectrometry-based peptidomics using reversed-phase HPLC fractionation and MALDI-TOF/TOF analysis. RESULTS: Based on the survey analysis, medicinal preparations of R. dentata have been used for anti-microbial and anti-malaria purpose in humans, and for aiding parturition in farm animals. The latter application was mentioned by one out of six respondents who claimed to use this plant for any medicinal purpose. The plant extract exhibited a weak uterotonic effect using organ bath studies. The plant contains cyclotides and the peptide riden A has been identified by de novo amino acid sequencing using mass spectrometry. CONCLUSION: Few dwellers around the settlement camps of the tropical forest of Omo (Nigeria) use R. dentata for various health problems in traditional veterinary and human medicine. The weak uterotonic effect of the cyclotide-rich extract is in agreement with the low use value index obtained for this plant. Cyclotides have been reported in the genus Rinorea confirming the ubiquitous expression of these stable bioactive plant peptides within the family of Violaceae.


Subject(s)
Cyclotides/chemistry , Medicine, African Traditional , Violaceae/chemistry , Animals , Animals, Domestic , Anti-Infective Agents/therapeutic use , Antimalarials/therapeutic use , Ethnopharmacology , Female , Humans , In Vitro Techniques , Myometrium/drug effects , Nigeria , Oxytocics/therapeutic use , Phytotherapy , Plant Extracts/therapeutic use , Pregnancy , Surveys and Questionnaires , Uterus/drug effects
19.
Reprod Sci ; 23(1): 98-111, 2016 Jan.
Article in English | MEDLINE | ID: mdl-26239389

ABSTRACT

We compared the relaxant effect of 2 known tocolytics; indomethacin and atosiban and progesterone, on pregnant human myometrial spontaneous and oxytocin-induced contractions from singleton and twin pregnancies. All agents exerted a concentration-dependent relaxant effect on myometrial contractions. There was no significant difference in the concentration-response curves between singletons and twins for progesterone or indomethacin on spontaneous contractions or atosiban on oxytocin-induced contraction. Under oxytocin however, the concentration-response curves for indomethacin and progesterone were significantly shifted to the right for both amplitude of contraction (P < .01) and activity integral (P < .01). When compared to singleton myometrium however, the concentration-response curves were significantly shifted to the right in the twin myometrium group (P < .05 progesterone and P < .001 indomethacin). We conclude that a greater concentration of progesterone and indomethacin is required to inhibit oxytocin-induced myometrial contractions in twins compared to singletons in vitro. The differences noted in the tissue pharmacologies may have implications for the successful prevention or inhibition of preterm labor in twin pregnancy.


Subject(s)
Indomethacin/pharmacology , Myometrium/drug effects , Progesterone/pharmacology , Tocolytic Agents/pharmacology , Uterine Contraction/drug effects , Vasotocin/analogs & derivatives , Female , Humans , Oxytocin/pharmacology , Pregnancy , Pregnancy, Twin , Vasotocin/pharmacology
20.
Proc Natl Acad Sci U S A ; 112(31): 9763-8, 2015 Aug 04.
Article in English | MEDLINE | ID: mdl-26195731

ABSTRACT

For successful birth, contractions need to become progressively stronger. The underlying mechanisms are unknown, however. We have found that a novel mechanism, hypoxia-induced force increase (HIFI), is switched on selectively, at term, and is essential to strengthening contractions. HIFI is initiated as contractions cyclically reduce blood flow and produce repeated hypoxic stresses, with associated metabolic and transcriptomic changes. The increases in contractility are a long-lasting, oxytocin-independent, intrinsic mechanism present only in the full-term pregnant uterus. HIFI is inhibited by adenosine receptor antagonism and blockade of cyclooxygenase-2 signaling, and partially reproduced by brief episodes of acidic (but not alkalotic) pH. HIFI explains how labor can progress despite paradoxical metabolic challenge, and provides a new mechanistic target for the 1 in 10 women suffering dysfunctional labor because of poor contractions.


Subject(s)
Hypoxia/physiopathology , Labor, Obstetric , Stress, Physiological , Uterine Contraction/physiology , Acids/metabolism , Adaptation, Physiological/drug effects , Adenosine/pharmacology , Adenosine Triphosphate/pharmacology , Animals , Biomechanical Phenomena/drug effects , Calcium/pharmacology , Cyclooxygenase 2/metabolism , Female , Humans , Hydrogen-Ion Concentration , In Vitro Techniques , Labor, Obstetric/drug effects , Myometrium/drug effects , Myometrium/physiopathology , Oxygen/pharmacology , Oxytocin/pharmacology , Pregnancy , Rats, Wistar , Receptor, Adenosine A1/metabolism , Receptors, Purinergic P2X7/metabolism , Stress, Physiological/drug effects , Uterine Contraction/drug effects
SELECTION OF CITATIONS
SEARCH DETAIL
...