Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
1.
Clin Neurophysiol ; 161: 133-146, 2024 May.
Article in English | MEDLINE | ID: mdl-38479239

ABSTRACT

OBJECTIVE: To evaluate the effects of transcranial direct current stimulation (tDCS) on Parkinson's disease (PD)-related pain. METHODS: This triple-blind randomized controlled trial included twenty-two patients (age range 38-85, 10 male) with PD-related pain. Eleven subjects received ten sessions of 20 minutes tDCS over the primary motor cortex contralateral to pain at 2 mA intensity. Eleven subjects received sham stimulation. Outcome measures included changes in the Kinǵs Parkinsons Pain Scale (KPPS), Brief Pain Inventory (BPI), widespread mechanical hyperalgesia (WMH), temporal summation of pain (TS), and conditioned pain modulation (CPM). RESULTS: Significant differences were found in KPPS between groups favoring the active-tDCS group compared to the sham-tDCS group at 15-days follow-up (p = 0.014) but not at 2 days post-intervention (p = 0.059). The active-group showed significant improvements over the sham-group after 15 days (p = 0.017). Significant changes were found in CPM between groups in favor of active-tDCS group at 2 days post-intervention (p = 0.002) and at 15 days (p = 0.017). No meaningful differences were observed in BPI or TS. CONCLUSIONS: tDCS of the primary motor cortex alleviates perceived PD-related pain, reduces pain sensitization, and enhances descending pain inhibition. SIGNIFICANCE: This is the first study to test and demonstrate the use of tDCS for improving PD-related pain.


Subject(s)
Parkinson Disease , Transcranial Direct Current Stimulation , Humans , Parkinson Disease/therapy , Parkinson Disease/physiopathology , Parkinson Disease/complications , Male , Transcranial Direct Current Stimulation/methods , Aged , Middle Aged , Female , Adult , Aged, 80 and over , Motor Cortex/physiopathology , Pain Management/methods , Pain/etiology , Pain/physiopathology , Pain Measurement
2.
NeuroRehabilitation ; 52(3): 329-348, 2023.
Article in English | MEDLINE | ID: mdl-37005900

ABSTRACT

BACKGROUND: Repetitive Transcranial Magnetic Stimulation (rTMS) over the primary motor cortex (M1) has been used to treat stroke motor sequelae regulating cortical excitability. Early interventions are widely recommended, but there is also evidence showing interventions in subacute or chronic phases are still useful. OBJECTIVE: To synthetize the evidence of rTMS protocols to improve upper limb motor function in people with subacute and/or chronic stroke. METHODS: Four databases were searched in July 2022. Clinical trials investigating the effectiveness of different rTMS protocols on upper limb motor function in subacute or chronic phases post-stroke were included. PRISMA guidelines and PEDro scale were used. RESULTS: Thirty-two studies representing 1137 participants were included. Positive effects of all types of rTMS protocols on upper limb motor function were found. These effects were heterogeneous and not always clinically relevant or related to neurophysiological changes but produced evident changes if evaluated with functional tests. CONCLUSION: rTMS interventions over M1 are effective for improving upper limb motor function in people with subacute and chronic stroke. When rTMS protocols were priming physical rehabilitation better effects were achieved. Studies considering minimal clinical differences and different dosing will help to generalize the use of these protocols in clinical practice.


Subject(s)
Motor Cortex , Stroke Rehabilitation , Stroke , Humans , Transcranial Magnetic Stimulation/methods , Recovery of Function/physiology , Stroke Rehabilitation/methods , Upper Extremity , Treatment Outcome
3.
Medicina (Kaunas) ; 57(8)2021 Jul 21.
Article in English | MEDLINE | ID: mdl-34440942

ABSTRACT

Background and Objectives: The motor sequelae after a stroke are frequently persistent and cause a high degree of disability. Cortical ischemic or hemorrhagic strokes affecting the cortico-spinal pathways are known to cause a reduction of cortical excitability in the lesioned area not only for the local connectivity impairment but also due to a contralateral hemisphere inhibitory action. Non-invasive brain stimulation using high frequency repetitive magnetic transcranial stimulation (rTMS) over the lesioned hemisphere and contralateral cortical inhibition using low-frequency rTMS have been shown to increase the excitability of the lesioned hemisphere. Mental representation techniques, neurofeedback, and virtual reality have also been shown to increase cortical excitability and complement conventional rehabilitation. Materials and Methods: We aim to carry out a single-blind, randomized, controlled trial aiming to study the efficacy of immersive multimodal Brain-Computer Interfacing-Virtual Reality (BCI-VR) training after bilateral neuromodulation with rTMS on upper limb motor recovery after subacute stroke (>3 months) compared to neuromodulation combined with conventional motor imagery tasks. This study will include 42 subjects in a randomized controlled trial design. The main expected outcomes are changes in the Motricity Index of the Arm (MI), dynamometry of the upper limb, score according to Fugl-Meyer for upper limb (FMA-UE), and changes in the Stroke Impact Scale (SIS). The evaluation will be carried out before the intervention, after each intervention and 15 days after the last session. Conclusions: This trial will show the additive value of VR immersive motor imagery as an adjuvant therapy combined with a known effective neuromodulation approach opening new perspectives for clinical rehabilitation protocols.


Subject(s)
Brain-Computer Interfaces , Stroke Rehabilitation , Stroke , Virtual Reality , Humans , Randomized Controlled Trials as Topic , Recovery of Function , Single-Blind Method , Stroke/therapy , Treatment Outcome , Upper Extremity
4.
J Integr Neurosci ; 20(2): 449-457, 2021 Jun 30.
Article in English | MEDLINE | ID: mdl-34258946

ABSTRACT

Severe traumatic brain injury residual cognitive impairments significantly impact the quality of life. EEG-based neurofeedback is a technique successfully used in traumatic brain injury and stroke to rehabilitate cognitive and motor sequelae. There are not individualized comparisons of the effects of EEG-based neurofeedback versus conventional neuropsychological rehabilitation. We present a case study of a traumatic brain injury subject in whom eight sessions of a neuropsychological rehabilitation protocol targeting attention, executive functions, and working memory as compared with a personalized EEG-based neurofeedback protocol focused on the electrodes and bands that differed from healthy subjects (F3, F1, Fz, FC3, FC1, and FCz), targeting the inhibition of theta frequency band (3 Hz-7 Hz) in the same number of sessions. Quantitative EEG and neuropsychological testing were performed. Clear benefits of EEG-based neurofeedback were found in divided and sustained attention and several aspects related to visuospatial skills and the processing speed of motor-dependent tasks. Correlative quantitative EEG changes justify the results. EEG-based neurofeedback is probably an excellent complementary technique to be considered to enhance conventional neuropsychological rehabilitation.


Subject(s)
Brain Injuries, Traumatic/rehabilitation , Cognitive Dysfunction/rehabilitation , Cognitive Remediation , Electroencephalography , Neurofeedback , Neurological Rehabilitation , Adult , Brain Injuries, Traumatic/complications , Brain Waves/physiology , Cognitive Dysfunction/etiology , Humans , Male , Virtual Reality , Young Adult
5.
Medicina (Kaunas) ; 57(4)2021 Mar 26.
Article in English | MEDLINE | ID: mdl-33810477

ABSTRACT

Background: Parkinson's disease (PD) is the second most common neurodegenerative disorder. This disease is characterized by motor symptoms, such as bradykinesia, tremor, and rigidity. Although balance impairment is characteristic of advanced stages, it can be present with less intensity since the beginning of the disease. Approximately 60% of PD patients fall once a year and 40% recurrently. On the other hand, cognitive symptoms affect up to 20% of patients with PD in early stages and can even precede the onset of motor symptoms. There are cognitive requirements for balance and can be challenged when attention is diverted or reduced, linking a worse balance and a higher probability of falls with a slower cognitive processing speed and attentional problems. Cognitive rehabilitation of attention and processing speed can lead to an improvement in postural stability in patients with Parkinson's. Methods: We present a parallel and controlled randomized clinical trial (RCT) to assess the impact on balance of a protocol based on cognitive rehabilitation focused on sustained attention through the NeuronUP platform (Neuronup SI, La Rioja, Spain) in patients with PD. For 4 weeks, patients in the experimental group will receive cognitive therapy three days a week while the control group will not receive any therapy. The protocol has been registered at trials.gov NCT04730466. Conclusions: Cognitive therapy efficacy on balance improvement may open the possibility of new rehabilitation strategies for prevention of falls in PD, reducing morbidity, and saving costs to the health care system.


Subject(s)
Parkinson Disease , Cognition , Exercise Therapy , Humans , Parkinson Disease/complications , Postural Balance , Randomized Controlled Trials as Topic , Spain
6.
Brain Sci ; 11(1)2021 Jan 06.
Article in English | MEDLINE | ID: mdl-33561080

ABSTRACT

Pain is an under-reported but prevalent symptom in Parkinson's Disease (PD), impacting patients' quality of life. Both pain and PD conditions cause cortical excitability reduction and non-invasive brain stimulation. Mental representation techniques are thought to be able to counteract it, also resulting effectively in chronic pain conditions. We aim to conduct two independent studies in order to evaluate the efficacy of transcranial direct current stimulation (tDCS) and mental representation protocol in the management of pain in PD patients during the ON state: (1) tDCS over the Primary Motor Cortex (M1); and (2) Action Observation (AO) and Motor Imagery (MI) training through a Brain-Computer Interface (BCI) using Virtual Reality (AO + MI-BCI). Both studies will include 32 subjects in a longitudinal prospective parallel randomized controlled trial design under different blinding conditions. The main outcomes will be score changes in King's Parkinson's Disease Pain Scale, Brief Pain Inventory, Temporal Summation, Conditioned Pain Modulation, and Pain Pressure Threshold. Assessment will be performed pre-intervention, post-intervention, and 15 days post-intervention, in both ON and OFF states.

7.
Neurodegener Dis ; 20(5-6): 193-199, 2020.
Article in English | MEDLINE | ID: mdl-34274926

ABSTRACT

BACKGROUND: Parkinson's disease (PD) patients are known to suffer from subtle cognitive and balance deficits from the early stages although they usually manifest in advanced stages. Postural instability (PI) has been correlated with slower information processing speed. Simple reaction time (SRT) tasks can be used to measure the speed of information processing. The main objective of this study was to examine the usefulness of SRT as a valid predictor of balance in PD, thus providing a simple and complementary assessment method. METHODS: This cross-sectional study included 52 PD patients without dementia who were evaluated for balance using the pull test (PT) maneuver and Biodex® limits of stability (LOS). In addition, a reaction time task was used to measure processing speed. Correlation and linear regression analyses were performed. RESULTS: The performance of SRT tasks was correlated with the evaluation of LOS% and PT, suggesting that the SRT may be a predictor of balance performance. Longer reaction time and poorer postural stability were also associated with disease duration but not with age. CONCLUSIONS: Poor performance in a simple reaction task can predict altered PI and can complement staging and evaluation in PD patients.

SELECTION OF CITATIONS
SEARCH DETAIL
...