Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Phys Chem Chem Phys ; 23(4): 2825-2835, 2021 Feb 04.
Article in English | MEDLINE | ID: mdl-33470997

ABSTRACT

Various structural configurations of iron trifluoride appear at the nanoscale and macroscopic size, either in the amorphous or crystalline state. The specific atomic organization in these structures crucially alters the performance of FeF3 as an effective cathode in Li-ion batteries. Our detailed first-principles computational simulations examine the structural strains induced by temperature and stress on the four anhydrous polymorphs observed so far in FeF3 at ambient pressure. A wealth of data covering previous experimental results on their equilibrium structures and extending their characterization with new static and isothermal equations of state is provided. We inform on how porous apertures associated with the six-octahedra rings of the HTB and pyrochlore phases are modified under compressive and expansive strains. A quasi-auxetic behavior at low pressures for the ground state rhombohedral phase is detected, which is in concordance with its anomalous structural anisotropy. In contrast with the effect of temperature, this structure undergoes under negative pressure phase transitions to the other three polymorphs, indicating potential conditions where low-density FeF3 could show a better performance in technological applications.

2.
Sci Rep ; 9(1): 9644, 2019 Jul 04.
Article in English | MEDLINE | ID: mdl-31273248

ABSTRACT

Rechargeable lithium-ion batteries dominate the consumer electronics and electric vehicle markets. However, concerns on Li availability have prompted the development of alternative high energy density electrochemical energy storage systems. Rechargeable batteries based on a Ca metal anode can exhibit advantages in terms of energy density, safety and cost. The development of rechargeable Ca metal batteries requires the identification of suitable high specific energy cathode materials. This work focuses on Ca-bearing minerals because they represent stable and abundant compounds. Suitable minerals should contain a transition metal able of being reversibly reduced and oxidized, which points to several major classes of silicates and carbonates: olivine (CaFeSiO4; kirschsteinite), pyroxene (CaFe/MnSi2O6; hedenbergite and johannsenite, respectively), garnet (Ca3Fe/Cr2Si3O12; andradite and uvarovite, respectively), amphibole (Ca2Fe5Si8O22(OH)2; ferroactinolite) and double carbonates (CaMn(CO3)2; kutnahorite and CaFe(CO3)2; ankerite). This work discusses their electrode characteristics based on crystal chemistry analysis and density functional theory (DFT) calculations. The results indicate that upon Ca deintercalation, compounds such as pyroxene, garnet and double carbonate minerals could display high theoretical energy densities (ranging from 780 to 1500 Wh/kg) with moderate structural modifications. As a downside, DFT calculations indicate a hampered Ca mobility in their crystal structures. The overall analysis then disregards olivine, garnet, pyroxene, amphibole and double carbonates as structural types for future Ca-cathode materials design.

3.
Phys Chem Chem Phys ; 19(38): 26435-26441, 2017 Oct 04.
Article in English | MEDLINE | ID: mdl-28944795

ABSTRACT

Layered MgMoN2 was prepared by solid state reaction at high temperature between Mo and Mg3N2 in N2 which represents a simple synthetic pathway compared to the previously reported method that used NaN3 as the nitrogen source. The crystal structure of MgMoN2 was studied by synchrotron X-ray and neutron powder diffraction. The feasibility of oxidizing this compound and concomitantly extracting magnesium from the structure was assessed by both chemical and electrochemical approaches, using different protocols. The X-ray diffraction patterns of the oxidized samples do not exhibit any relevant difference with respect to that of the as prepared MgMoN2 and no differences in the cell parameters are deduced from Rietveld refinements. No hints pointing at the presence of any amorphous phase are observed either. These results are rationalized through DFT calculated energy barriers for Mg2+ ion migration in MgMoN2.

4.
Phys Chem Chem Phys ; 18(29): 19966-72, 2016 Jul 20.
Article in English | MEDLINE | ID: mdl-27398629

ABSTRACT

Basic electrochemical characteristics of CaMO3 perovskites (M = Mo, Cr, Mn, Fe, Co, and Ni) as cathode materials for Ca ion batteries are investigated using first principles calculations at the Density Functional Theory level (DFT). Calculations have been performed within the Generalized Gradient Approximation (GGA) and GGA+U methodologies, and considering cubic and orthorhombic perovskite structures for CaxMO3 (x = 0, 0.25, 0.5, 0.75 and 1). The analysis of the calculated voltage-composition profile and volume variations identifies CaMoO3 as the most promising perovskite compound. It combines good electronic conductivity, moderate crystal structure modifications, and activity in the 2-3 V region with several intermediate CaxMoO3 phases. However, we found too large barriers for Ca diffusion (around 2 eV) which are inherent to the perovskite structure. The CaMoO3 perovskite was synthesized, characterized and electrochemically tested, and results confirmed the predicted trends.

5.
Inorg Chem ; 51(10): 5779-86, 2012 May 21.
Article in English | MEDLINE | ID: mdl-22571600

ABSTRACT

In this work, the high-pressure behavior of Pmn2(1)-Li(2)MnSiO(4) and Pbn2(1)-Li(2)CoSiO(4) is followed by in situ X-ray diffraction at room temperature. Bulk moduli are 81 and 95 GPa for Pmn2(1)-Li(2)MnSiO(4) and Pbn2(1)-Li(2)CoSiO(4), respectively. Regardless of the moderate values of the bulk moduli, there is no evidence of any phase transformation up to a pressure of 15 GPa. Pmn2(1)-Li(2)MnSiO(4) shows an unusual expansion of the a lattice parameter upon compression. A density functional theory investigation yields lattice parameter variations and bulk moduli in good agreement with experiments. The calculated data indicate that expansion of the a lattice parameter is inherent to the crystal structure and independent of the nature of the transition-metal atom (M). The absence of pressure-driven phase transformation is likely associated with the incapability of the Li(2)MSiO(4) composition to adopt denser structures while avoiding large electrostatic repulsions.


Subject(s)
Cobalt/chemistry , Lithium/chemistry , Magnesium/chemistry , Silicates/chemistry , Crystallization , Electric Power Supplies , Electrodes , Models, Molecular , Phase Transition , Pressure , X-Ray Diffraction
6.
Inorg Chem ; 51(5): 3194-201, 2012 Mar 05.
Article in English | MEDLINE | ID: mdl-22360539

ABSTRACT

We report here the Raman spectrum and lattice dynamics study of a well-crystallized ß-V(2)O(5) material prepared via a high-temperature/high-pressure (HT/HP) route, using α-V(2)O(5) as the precursor. Periodic quantum-chemical density functional theory calculations show good agreement with the experimental results and allow one to assign the observed spectral features to specific vibrational modes in the ß-V(2)O(5) polymorph. Key structure-spectrum relationships are extracted from comparative analysis of the vibrational states of the ß-V(2)O(5) and α-V(2)O(5) structures, and spectral patterns specific to the basic units of the two V(2)O(5) phases are proposed for the first time. Such results open the way for the use of Raman spectroscopy for the structural characterization of vanadium oxide-based host lattices of interest in the field of lithium batteries and help us to greatly understand the atomistic mechanism involved in the α-to-ß phase transition of vanadium pentoxide.

7.
J Chem Phys ; 135(5): 054503, 2011 Aug 07.
Article in English | MEDLINE | ID: mdl-21823708

ABSTRACT

This work investigates crystal lattice, electronic structure, relative stability, and high pressure behavior of TiO(2) polymorphs (anatase, rutile, and columbite) using the density functional theory (DFT) improved by an on-site Coulomb self-interaction potential (DFT+U). For the latter the effect of the U parameter value (0 < U < 10 eV) is analyzed within the local density approximation (LDA+U) and the generalized gradient approximation (GGA+U). Results are compared to those of conventional DFT and Heyd-Scuseria-Ernzehorf screened hybrid functional (HSE06). For the investigation of the individual polymorphs (crystal and electronic structures), the GGA+U/LDA+U method and the HSE06 functional are in better agreement with experiments compared to the conventional GGA or LDA. Within the DFT+U the reproduction of the experimental band-gap of rutile/anatase is achieved with a U value of 10/8 eV, whereas a better description of the crystal and electronic structures is obtained for U < 5 eV. Conventional GGA∕LDA and HSE06 fail to reproduce phase stability at ambient pressure, rendering the anatase form lower in energy than the rutile phase. The LDA+U excessively stabilizes the columbite form. The GGA+U method corrects these deficiencies; U values between 5 and 8 eV are required to get an energetic sequence consistent with experiments (E(rutile) < E(anatase) < E(columbite)). The computed phase stability under pressure within the GGA+U is also consistent with experimental results. The best agreement between experimental and computed transition pressures is reached for U ≈ 5 eV.

SELECTION OF CITATIONS
SEARCH DETAIL
...