Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
J Comput Chem ; 42(21): 1466-1474, 2021 08 05.
Article in English | MEDLINE | ID: mdl-33990982

ABSTRACT

We explore how ideas and practices common in Bayesian modeling can be applied to help assess the quality of 3D protein structural models. The basic premise of our approach is that the evaluation of a Bayesian statistical model's fit may reveal aspects of the quality of a structure when the fitted data is related to protein structural properties. Therefore, we fit a Bayesian hierarchical linear regression model to experimental and theoretical 13 Cα chemical shifts. Then, we propose two complementary approaches for the evaluation of such fitting: (a) in terms of the expected differences between experimental and posterior predicted values; (b) in terms of the leave-one-out cross-validation point-wise predictive accuracy. Finally, we present visualizations that can help interpret these evaluations. The analyses presented in this article are aimed to aid in detecting problematic residues in protein structures. The code developed for this work is available on: https://github.com/BIOS-IMASL/Hierarchical-Bayes-NMR-Validation.


Subject(s)
Bayes Theorem , Proteins/chemistry , Models, Molecular , Protein Conformation
2.
J Phys Chem B ; 124(5): 735-741, 2020 02 06.
Article in English | MEDLINE | ID: mdl-31928007

ABSTRACT

In the present work, we explore three different approaches for the computation of the one-bond spin-spin coupling constants (SSCC) 1JCαH in proteins: density functional theory (DFT) calculations, a Karplus-like equation, and Gaussian process regression. The main motivation of this work is to select the best method for fast and accurate computation of the 1JCαH SSCC, for its use in everyday applications in protein structure validation, refinement, and/or determination. Our initial results showed a poor agreement between the DFT-computed and observed 1JCαH SSCC values. Further analysis leads us to the understanding that the model chosen for the DFT computations is inappropriate and that more complex models will require a higher, if not prohibitively, computational cost. Finally, we show that the Karplus-like equation and Gaussian Process regression provide faster and more accurate results than DFT-based calculations.


Subject(s)
Proteins/chemistry , Carbon/chemistry , Density Functional Theory , Hydrogen/chemistry , Models, Chemical , Nuclear Magnetic Resonance, Biomolecular/methods , Regression Analysis
3.
J Comput Aided Mol Des ; 30(8): 619-24, 2016 08.
Article in English | MEDLINE | ID: mdl-27549814

ABSTRACT

Glycans are key molecules in many physiological and pathological processes. As with other molecules, like proteins, visualization of the 3D structures of glycans adds valuable information for understanding their biological function. Hence, here we introduce Azahar, a computing environment for the creation, visualization and analysis of glycan molecules. Azahar is implemented in Python and works as a plugin for the well known PyMOL package (Schrodinger in The PyMOL molecular graphics system, version 1.3r1, 2010). Besides the already available visualization and analysis options provided by PyMOL, Azahar includes 3 cartoon-like representations and tools for 3D structure caracterization such as a comformational search using a Monte Carlo with minimization routine and also tools to analyse single glycans or trajectories/ensembles including the calculation of radius of gyration, Ramachandran plots and hydrogen bonds. Azahar is freely available to download from http://www.pymolwiki.org/index.php/Azahar and the source code is available at https://github.com/agustinaarroyuelo/Azahar .


Subject(s)
Polysaccharides/chemistry , Software , Carbohydrate Conformation , Models, Molecular , Monte Carlo Method
SELECTION OF CITATIONS
SEARCH DETAIL
...