Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 70
Filter
1.
Radiol Cardiothorac Imaging ; 6(3): e230140, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38780427

ABSTRACT

Purpose To investigate the feasibility of using quantitative MR elastography (MRE) to characterize the influence of aging and sex on left ventricular (LV) shear stiffness. Materials and Methods In this prospective study, LV myocardial shear stiffness was measured in 109 healthy volunteers (age range: 18-84 years; mean age, 40 years ± 18 [SD]; 57 women, 52 men) enrolled between November 2018 and September 2019, using a 5-minute MRE acquisition added to a clinical MRI protocol. Linear regression models were used to estimate the association of cardiac MRI and MRE characteristics with age and sex; models were also fit to assess potential age-sex interaction. Results Myocardial shear stiffness significantly increased with age in female (age slope = 0.03 kPa/year ± 0.01, P = .009) but not male (age slope = 0.008 kPa/year ± 0.009, P = .38) volunteers. LV ejection fraction (LVEF) increased significantly with age in female volunteers (0.23% ± 0.08 per year, P = .005). LV end-systolic volume (LVESV) decreased with age in female volunteers (-0.20 mL/m2 ± 0.07, P = .003). MRI parameters, including T1, strain, and LV mass, did not demonstrate this interaction (P > .05). Myocardial shear stiffness was not significantly correlated with LVEF, LV stroke volume, body mass index, or any MRI strain metrics (P > .05) but showed significant correlations with LV end-diastolic volume/body surface area (BSA) (slope = -3 kPa/mL/m2 ± 1, P = .004, r2 = 0.08) and LVESV/BSA (-1.6 kPa/mL/m2 ± 0.5, P = .003, r2 = 0.08). Conclusion This study demonstrates that female, but not male, individuals experience disproportionate LV stiffening with natural aging, and these changes can be noninvasively measured with MRE. Keywords: Cardiac, Elastography, Biological Effects, Experimental Investigations, Sexual Dimorphisms, MR Elastography, Myocardial Shear Stiffness, Quantitative Stiffness Imaging, Aging Heart, Myocardial Biomechanics, Cardiac MRE Supplemental material is available for this article. Published under a CC BY 4.0 license.


Subject(s)
Aging , Elasticity Imaging Techniques , Heart Ventricles , Humans , Female , Adult , Male , Middle Aged , Aged , Elasticity Imaging Techniques/methods , Aged, 80 and over , Adolescent , Prospective Studies , Aging/physiology , Heart Ventricles/diagnostic imaging , Young Adult , Sex Factors , Ventricular Function, Left/physiology , Magnetic Resonance Imaging , Feasibility Studies
2.
J Am Heart Assoc ; 13(9): e032520, 2024 May 07.
Article in English | MEDLINE | ID: mdl-38686858

ABSTRACT

BACKGROUND: Symptomatic limitations in apical hypertrophic cardiomyopathy may occur because of diastolic dysfunction with resultant elevated left ventricular filling pressures, cardiac output limitation to exercise, pulmonary hypertension (PH), valvular abnormalities, and/or arrhythmias. In this study, the authors aimed to describe invasive cardiac hemodynamics in a cohort of patients with apical hypertrophic cardiomyopathy. METHODS AND RESULTS: Patients presenting to a comprehensive hypertrophic cardiomyopathy center with apical hypertrophic cardiomyopathy were identified (n=542) and those who underwent invasive hemodynamic catheterization (n=47) were included in the study. Of these, 10 were excluded due to postmyectomy status or incomplete hemodynamic data. The mean age was 56±18 years, 16 (43%) were women, and ejection fraction was preserved (≥50%) in 32 (91%) patients. The most common indication for catheterization was dyspnea (48%) followed by suspected PH (13%), and preheart transplant evaluation (10%). Elevated left ventricular filling pressures at rest or exercise were present in 32 (86%) patients. PH was present in 30 (81%) patients, with 6 (20%) also having right-sided heart failure. Cardiac index was available in 25 (86%) patients with elevated resting filling pressures. Of these, 19 (76%) had reduced cardiac index and all 6 with right-sided heart failure had reduced cardiac index. Resting hemodynamics were normal in 8 of 37 (22%) patients, with 5 during exercise; 3 of 5 (60%) patients had exercise-induced elevation in left ventricular filling pressures. CONCLUSIONS: In patients with apical hypertrophic cardiomyopathy undergoing invasive hemodynamic cardiac catheterization, 86% had elevated left ventricular filling pressures at rest or with exercise, 81% had PH, and 20% of those with PH had concomitant right-sided heart failure.


Subject(s)
Cardiac Catheterization , Cardiomyopathy, Hypertrophic , Hemodynamics , Humans , Female , Cardiomyopathy, Hypertrophic/physiopathology , Cardiomyopathy, Hypertrophic/complications , Middle Aged , Male , Aged , Hemodynamics/physiology , Adult , Ventricular Function, Left/physiology , Stroke Volume/physiology , Retrospective Studies , Hypertension, Pulmonary/physiopathology , Hypertension, Pulmonary/diagnosis , Apical Hypertrophic Cardiomyopathy
4.
Mayo Clin Proc ; 99(6): 902-912, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38661596

ABSTRACT

OBJECTIVE: To evaluate mortality outcomes by varying degrees of reduced calf muscle pump (CMP) ejection fraction (EF). PATIENTS AND METHODS: Consecutive adult patients who underwent venous air plethysmography testing at the Mayo Clinic Gonda Vascular Laboratory (January 1, 2012, through December 31, 2022) were divided into groups based on CMP EF for the assessment of all-cause mortality. Other venous physiology included measures of valvular incompetence and clinical venous disease (CEAP [clinical presentation, etiology, anatomy, and pathophysiology] score). Mortality rates were calculated using the Kaplan-Meier method. RESULTS: During the study, 5913 patients met the inclusion criteria. During 2.84-year median follow-up, there were 431 deaths. Mortality rates increased with decreasing CMP EF. Compared with EF of 50% or higher, the hazard ratios (95% CIs) for mortality were as follows: EF of 40% to 49%, 1.4 (1.0 to 2.0); EF of 30% to 39%, 1.6 (1.2 to 2.4); EF of 20% to 29%, 1.7 (1.2 to 2.4); EF of 10% to 19%, 2.4 (1.7 to 3.3) (log-rank P≤.001). Although measures of venous valvular incompetence did not independently predict outcomes, venous disease severity assessed by CEAP score was predictive. After adjusting for several clinical covariates, both CMP EF and clinical venous disease severity assessed by CEAP score remained independent predictors of mortality. CONCLUSION: Mortality rates are higher in patients with reduced CMP EF and seem to increase with each 10% decrement in CMP EF. The mortality mechanism does not seem to be impacted by venous valvular incompetence and may represent variables intrinsic to muscular physiology.


Subject(s)
Leg , Muscle, Skeletal , Stroke Volume , Humans , Male , Female , Middle Aged , Stroke Volume/physiology , Muscle, Skeletal/physiopathology , Leg/blood supply , Aged , Adult , Plethysmography , Venous Insufficiency/physiopathology , Venous Insufficiency/mortality , Retrospective Studies , Cause of Death
5.
J Vasc Surg ; 2024 Feb 28.
Article in English | MEDLINE | ID: mdl-38417709

ABSTRACT

OBJECTIVE: Patients with diabetes mellitus (DM) are at increased risk for peripheral artery disease (PAD) and its complications. Arterial calcification and non-compressibility may limit test interpretation in this population. Developing tools capable of identifying PAD and predicting major adverse cardiac event (MACE) and limb event (MALE) outcomes among patients with DM would be clinically useful. Deep neural network analysis of resting Doppler arterial waveforms was used to detect PAD among patients with DM and to identify those at greatest risk for major adverse outcome events. METHODS: Consecutive patients with DM undergoing lower limb arterial testing (April 1, 2015-December 30, 2020) were randomly allocated to training, validation, and testing subsets (60%, 20%, and 20%). Deep neural networks were trained on resting posterior tibial arterial Doppler waveforms to predict all-cause mortality, MACE, and MALE at 5 years using quartiles based on the distribution of the prediction score. RESULTS: Among 11,384 total patients, 4211 patients with DM met study criteria (mean age, 68.6 ± 11.9 years; 32.0% female). After allocating the training and validation subsets, the final test subset included 856 patients. During follow-up, there were 262 deaths, 319 MACE, and 99 MALE. Patients in the upper quartile of prediction based on deep neural network analysis of the posterior tibial artery waveform provided independent prediction of death (hazard ratio [HR], 3.58; 95% confidence interval [CI], 2.31-5.56), MACE (HR, 2.06; 95% CI, 1.49-2.91), and MALE (HR, 13.50; 95% CI, 5.83-31.27). CONCLUSIONS: An artificial intelligence enabled analysis of a resting Doppler arterial waveform permits identification of major adverse outcomes including all-cause mortality, MACE, and MALE among patients with DM.

7.
J Am Heart Assoc ; 13(3): e031880, 2024 Feb 06.
Article in English | MEDLINE | ID: mdl-38240202

ABSTRACT

BACKGROUND: Patients with peripheral artery disease are at increased risk for major adverse cardiac events, major adverse limb events, and all-cause death. Developing tools capable of identifying those patients with peripheral artery disease at greatest risk for major adverse events is the first step for outcome prevention. This study aimed to determine whether computer-assisted analysis of a resting Doppler waveform using deep neural networks can accurately identify patients with peripheral artery disease at greatest risk for adverse outcome events. METHODS AND RESULTS: Consecutive patients (April 1, 2015, to December 31, 2020) undergoing ankle-brachial index testing were included. Patients were randomly allocated to training, validation, and testing subsets (60%/20%/20%). Deep neural networks were trained on resting posterior tibial arterial Doppler waveforms to predict major adverse cardiac events, major adverse limb events, and all-cause death at 5 years. Patients were then analyzed in groups based on the quartiles of each prediction score in the training set. Among 11 384 total patients, 10 437 patients met study inclusion criteria (mean age, 65.8±14.8 years; 40.6% women). The test subset included 2084 patients. During 5 years of follow-up, there were 447 deaths, 585 major adverse cardiac events, and 161 MALE events. After adjusting for age, sex, and Charlson comorbidity index, deep neural network analysis of the posterior tibial artery waveform provided independent prediction of death (hazard ratio [HR], 2.44 [95% CI, 1.78-3.34]), major adverse cardiac events (HR, 1.97 [95% CI, 1.49-2.61]), and major adverse limb events (HR, 11.03 [95% CI, 5.43-22.39]) at 5 years. CONCLUSIONS: An artificial intelligence-enabled analysis of Doppler arterial waveforms enables identification of major adverse outcomes among patients with peripheral artery disease, which may promote early adoption and adherence of risk factor modification.


Subject(s)
Artificial Intelligence , Peripheral Arterial Disease , Humans , Female , Middle Aged , Aged , Aged, 80 and over , Male , Peripheral Arterial Disease/diagnostic imaging , Risk Factors
8.
J Am Soc Echocardiogr ; 37(4): 382-393.e1, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38000684

ABSTRACT

BACKGROUND: Exercise echocardiography can assess for cardiovascular causes of dyspnea other than coronary artery disease. However, the prevalence and prognostic significance of elevated left ventricular (LV) filling pressures with exercise is understudied. METHODS: We evaluated 14,338 patients referred for maximal symptom-limited treadmill echocardiography. In addition to assessment of LV regional wall motion abnormalities (RWMAs), we measured patients' early diastolic mitral inflow (E), septal mitral annulus relaxation (e'), and peak tricuspid regurgitation velocity before and immediately after exercise. RESULTS: Over a mean follow-up of 3.3 ± 3.4 years, patients with E/e' ≥15 with exercise (n = 1,323; 9.2%) had lower exercise capacity (7.3 ± 2.1 vs 9.1 ± 2.4 metabolic equivalents, P < .0001) and were more likely to have resting or inducible RWMAs (38% vs 18%, P < .0001). Approximately 6% (n = 837) had elevated LV filling pressures without RWMAs. Patients with a poststress E/e' ≥15 had a 2.71-fold increased mortality rate (2.28-3.21, P < .0001) compared with those with poststress E/e' ≤ 8. Those with an E/e' of 9 to 14, while at lower risk than the E/e' ≥15 cohort (hazard ratio [HR] = 0.58 [0.48-0.69]; P < .0001), had higher risk than if E/e' ≤8 (HR = 1.56 [1.37-1.78], P < .0001). On multivariable analysis, adjusting for age, sex, exercise capacity, LV ejection fraction, and presence of pulmonary hypertension with stress, patients with E/e' ≥15 had a 1.39-fold (95% CI, 1.18-1.65, P < .0001) increased risk of all-cause mortality compared with patients without elevated LV filling pressures. Compared with patients with E/e' ≤ 15 after exercise, patients with E/e' ≤15 at rest but elevated after exercise had a higher risk of cardiovascular death (HR = 8.99 [4.7-17.3], P < .0001). CONCLUSION: Patients with elevated LV filling pressures are at increased risk of death, irrespective of myocardial ischemia or LV systolic dysfunction. These findings support the routine incorporation of LV filling pressure assessment, both before and immediately following stress, into the evaluation of patients referred for exercise echocardiography.


Subject(s)
Coronary Artery Disease , Ventricular Dysfunction, Left , Humans , Prognosis , Ventricular Function, Left , Ventricular Dysfunction, Left/diagnostic imaging , Exercise Test , Stroke Volume , Diastole
9.
Open Heart ; 10(2)2023 Nov 27.
Article in English | MEDLINE | ID: mdl-38011995

ABSTRACT

OBJECTIVE: Tricuspid regurgitation (TR) is a prevalent valve disease associated with significant morbidity and mortality. We aimed to apply machine learning (ML) to assess risk stratification in patients with ≥moderate TR. METHODS: Patients with ≥moderate TR on echocardiogram between January 2005 and December 2016 were retrospectively included. We used 70% of data to train ML-based survival models including 27 clinical and echocardiographic features to predict mortality over a 3-year period on an independent test set (30%). To account for differences in baseline comorbidities, prediction was performed in groups stratified by increasing Charlson Comorbidity Index (CCI). Permutation feature importance was calculated using the best-performing model separately in these groups. RESULTS: Of 13 312 patients, mean age 72 ± 13 years and 7406 (55%) women, 7409 (56%) had moderate, 2646 (20%) had moderate-severe and 3257 (24%) had severe TR. The overall performance for 1-year mortality by 3 ML models was good, c-statistic 0.74-0.75. Interestingly, performance varied between CCI groups, (c-statistic = 0.774 in lowest CCI group and 0.661 in highest CCI group). The performance decreased over 3-year follow-up (average c-index 0.78). Furthermore, the top 10 features contributing to these predictions varied slightly with the CCI group, the top features included heart rate, right ventricular systolic pressure, blood pressure, diuretic use and age. CONCLUSIONS: Machine learning of common clinical and echocardiographic features can evaluate mortality risk in patients with TR. Further refinement of models and validation in prospective studies are needed before incorporation into the clinical practice.


Subject(s)
Tricuspid Valve Insufficiency , Humans , Female , Middle Aged , Aged , Aged, 80 and over , Male , Tricuspid Valve Insufficiency/diagnostic imaging , Tricuspid Valve Insufficiency/complications , Retrospective Studies , Treatment Outcome , Echocardiography , Prospective Studies
10.
JMIR Med Inform ; 11: e40964, 2023 Feb 24.
Article in English | MEDLINE | ID: mdl-36826984

ABSTRACT

BACKGROUND: Management of abdominal aortic aneurysms (AAAs) requires serial imaging surveillance to evaluate the aneurysm dimension. Natural language processing (NLP) has been previously developed to retrospectively identify patients with AAA from electronic health records (EHRs). However, there are no reported studies that use NLP to identify patients with AAA in near real-time from radiology reports. OBJECTIVE: This study aims to develop and validate a rule-based NLP algorithm for near real-time automatic extraction of AAA diagnosis from radiology reports for case identification. METHODS: The AAA-NLP algorithm was developed and deployed to an EHR big data infrastructure for near real-time processing of radiology reports from May 1, 2019, to September 2020. NLP extracted named entities for AAA case identification and classified subjects as cases and controls. The reference standard to assess algorithm performance was a manual review of processed radiology reports by trained physicians following standardized criteria. Reviewers were blinded to the diagnosis of each subject. The AAA-NLP algorithm was refined in 3 successive iterations. For each iteration, the AAA-NLP algorithm was modified based on performance compared to the reference standard. RESULTS: A total of 360 reports were reviewed, of which 120 radiology reports were randomly selected for each iteration. At each iteration, the AAA-NLP algorithm performance improved. The algorithm identified AAA cases in near real-time with high positive predictive value (0.98), sensitivity (0.95), specificity (0.98), F1 score (0.97), and accuracy (0.97). CONCLUSIONS: Implementation of NLP for accurate identification of AAA cases from radiology reports with high performance in near real time is feasible. This NLP technique will support automated input for patient care and clinical decision support tools for the management of patients with AAA. .

11.
Cardiooncology ; 9(1): 7, 2023 Jan 23.
Article in English | MEDLINE | ID: mdl-36691060

ABSTRACT

BACKGROUND: The many improvements in cancer therapies have led to an increased number of survivors, which comes with a greater risk of consequent/subsequent cardiovascular disease. Identifying effective management strategies that can mitigate this risk of cardiovascular complications is vital. Therefore, developing computer-driven and personalized clinical decision aid interventions that can provide early detection of patients at risk, stratify that risk, and recommend specific cardio-oncology management guidelines and expert consensus recommendations is critically important. OBJECTIVES: To assess the feasibility, acceptability, and utility of the use of an artificial intelligence (AI)-powered clinical decision aid tool in shared decision making between the cancer survivor patient and the cardiologist regarding prevention of cardiovascular disease. DESIGN: This is a single-center, double-arm, open-label, randomized interventional feasibility study. Our cardio-oncology cohort of > 4000 individuals from our Clinical Research Data Warehouse will be queried to identify at least 200 adult cancer survivors who meet the eligibility criteria. Study participants will be randomized into either the Clinical Decision Aid Group (where patients will use the clinical decision aid in addition to current practice) or the Control Group (current practice). The primary endpoint of this study is to assess for each patient encounter whether cardiovascular medications and imaging pursued were consistent with current medical society recommendations. Additionally, the perceptions of using the clinical decision tool will be evaluated based on patient and physician feedback through surveys and focus groups. This trial will determine whether a clinical decision aid tool improves cancer survivors' medication use and imaging surveillance recommendations aligned with current medical guidelines. TRIAL REGISTRATION: ClinicalTrials.Gov Identifier: NCT05377320.

12.
Front Cardiovasc Med ; 10: 1288747, 2023.
Article in English | MEDLINE | ID: mdl-38274315

ABSTRACT

Introduction: Apical hypertrophic cardiomyopathy (ApHCM) is a subtype of hypertrophic cardiomyopathy (HCM) that affects up to 25% of Asian patients and is not as well understood in non-Asian patients. Although ApHCM has been considered a more "benign" variant, it is associated with increased risk of atrial and ventricular arrhythmias, apical thrombi, stroke, and progressive heart failure. The occurrence of pulmonary hypertension (PH) in ApHCM, due to elevated pressures on the left side of the heart, has been documented. However, the exact prevalence of PH in ApHCM and sex differences remain uncertain. Methods: We sought to evaluate the prevalence, risk associations, and sex differences in elevated pulmonary pressures in the largest cohort of patients with ApHCM at a single tertiary center. A total of 542 patients diagnosed with ApHCM were identified using ICD codes and clinical notes searches, confirmed by cross-referencing with cardiac MRI reports extracted through Natural Language Processing and through manual evaluation of patient charts and imaging records. Results: In 414 patients, echocardiogram measurements of pulmonary artery systolic pressure (PASP) were obtained at the time of diagnosis. The mean age was 59.4 ± 16.6 years, with 181 (44%) being females. The mean PASP was 38 ± 12 mmHg in females vs. 33 ± 9 mmHg in males (p < 0.0001). PH as defined by a PASP value of > 36 mmHg was present in 140/414 (34%) patients, with a predominance in females [79/181 (44%)] vs. males [61/233 (26%), p < 0.0001]. Female sex, atrial fibrillation, diagnosis of congestive heart failure, and elevated filling pressures on echocardiogram remained significantly associated with PH (PASP > 36 mmHg) in multivariable modeling. PH, when present, was independently associated with mortality [hazard ratio 1.63, 95% CI (1.05-2.53), p = 0.028] and symptoms [odds ratio 2.28 (1.40, 3.71), p < 0.001]. Conclusion: PH was present in 34% of patients with ApHCM at diagnosis, with female sex predominance. PH in ApHCM was associated with symptoms and increased mortality.

13.
BMC Med Inform Decis Mak ; 22(1): 272, 2022 10 18.
Article in English | MEDLINE | ID: mdl-36258218

ABSTRACT

BACKGROUND: Cardiac magnetic resonance (CMR) imaging is important for diagnosis and risk stratification of hypertrophic cardiomyopathy (HCM) patients. However, collection of information from large numbers of CMR reports by manual review is time-consuming, error-prone and costly. Natural language processing (NLP) is an artificial intelligence method for automated extraction of information from narrative text including text in CMR reports in electronic health records (EHR). Our objective was to assess whether NLP can accurately extract diagnosis of HCM from CMR reports. METHODS: An NLP system with two tiers was developed for information extraction from narrative text in CMR reports; the first tier extracted information regarding HCM diagnosis while the second extracted categorical and numeric concepts for HCM classification. We randomly allocated 200 HCM patients with CMR reports from 2004 to 2018 into training (100 patients with 185 CMR reports) and testing sets (100 patients with 206 reports). RESULTS: NLP algorithms demonstrated very high performance compared to manual annotation. The algorithm to extract HCM diagnosis had accuracy of 0.99. The accuracy for categorical concepts included HCM morphologic subtype 0.99, systolic anterior motion of the mitral valve 0.96, mitral regurgitation 0.93, left ventricular (LV) obstruction 0.94, location of obstruction 0.92, apical pouch 0.98, LV delayed enhancement 0.93, left atrial enlargement 0.99 and right atrial enlargement 0.98. Accuracy for numeric concepts included maximal LV wall thickness 0.96, LV mass 0.99, LV mass index 0.98, LV ejection fraction 0.98 and right ventricular ejection fraction 0.99. CONCLUSIONS: NLP identified and classified HCM from CMR narrative text reports with very high performance.


Subject(s)
Cardiomyopathy, Hypertrophic , Natural Language Processing , Humans , Stroke Volume , Artificial Intelligence , Ventricular Function, Right , Cardiomyopathy, Hypertrophic/diagnostic imaging , Cardiomyopathy, Hypertrophic/pathology , Magnetic Resonance Imaging , Magnetic Resonance Spectroscopy
14.
J Med Internet Res ; 24(8): e27333, 2022 08 22.
Article in English | MEDLINE | ID: mdl-35994324

ABSTRACT

BACKGROUND: Clinical practice guidelines recommend antiplatelet and statin therapies as well as blood pressure control and tobacco cessation for secondary prevention in patients with established atherosclerotic cardiovascular diseases (ASCVDs). However, these strategies for risk modification are underused, especially in rural communities. Moreover, resources to support the delivery of preventive care to rural patients are fewer than those for their urban counterparts. Transformative interventions for the delivery of tailored preventive cardiovascular care to rural patients are needed. OBJECTIVE: A multidisciplinary team developed a rural-specific, team-based model of care intervention assisted by clinical decision support (CDS) technology using participatory design in a sociotechnical conceptual framework. The model of care intervention included redesigned workflows and a novel CDS technology for the coordination and delivery of guideline recommendations by primary care teams in a rural clinic. METHODS: The design of the model of care intervention comprised 3 phases: problem identification, experimentation, and testing. Input from team members (n=35) required 150 hours, including observations of clinical encounters, provider workshops, and interviews with patients and health care professionals. The intervention was prototyped, iteratively refined, and tested with user feedback. In a 3-month pilot trial, 369 patients with ASCVDs were randomized into the control or intervention arm. RESULTS: New workflows and a novel CDS tool were created to identify patients with ASCVDs who had gaps in preventive care and assign the right care team member for delivery of tailored recommendations. During the pilot, the intervention prototype was iteratively refined and tested. The pilot demonstrated feasibility for successful implementation of the sociotechnical intervention as the proportion of patients who had encounters with advanced practice providers (nurse practitioners and physician assistants), pharmacists, or tobacco cessation coaches for the delivery of guideline recommendations in the intervention arm was greater than that in the control arm. CONCLUSIONS: Participatory design and a sociotechnical conceptual framework enabled the development of a rural-specific, team-based model of care intervention assisted by CDS technology for the transformation of preventive health care delivery for ASCVDs.


Subject(s)
Decision Support Systems, Clinical , Rural Population , Ambulatory Care Facilities , Blood Pressure , Humans , Preventive Health Services
15.
Vasc Med ; 27(4): 333-342, 2022 08.
Article in English | MEDLINE | ID: mdl-35535982

ABSTRACT

BACKGROUND: Patients with peripheral artery disease (PAD) are at increased risk for major adverse limb and cardiac events including mortality. Developing screening tools capable of accurate PAD identification is a necessary first step for strategies of adverse outcome prevention. This study aimed to determine whether machine analysis of a resting Doppler waveform using deep neural networks can accurately identify patients with PAD. METHODS: Consecutive patients (4/8/2015 - 12/31/2020) undergoing rest and postexercise ankle-brachial index (ABI) testing were included. Patients were randomly allocated to training, validation, and testing subsets (70%/15%/15%). Deep neural networks were trained on resting posterior tibial arterial Doppler waveforms to predict normal (> 0.9) or PAD (⩽ 0.9) using rest and postexercise ABI. A separate dataset of 151 patients who underwent testing during a period after the model had been created and validated (1/1/2021 - 3/31/2021) was used for secondary validation. Area under the receiver operating characteristic curves (AUC) were constructed to evaluate test performance. RESULTS: Among 11,748 total patients, 3432 patients met study criteria: 1941 with PAD (mean age 69 ± 12 years) and 1491 without PAD (64 ± 14 years). The predictive model with highest performance identified PAD with an AUC 0.94 (CI = 0.92-0.96), sensitivity 0.83, specificity 0.88, accuracy 0.85, and positive predictive value (PPV) 0.90. Results were similar for the validation dataset: AUC 0.94 (CI = 0.91-0.98), sensitivity 0.91, specificity 0.85, accuracy 0.89, and PPV 0.89 (postexercise ABI comparison). CONCLUSION: An artificial intelligence-enabled analysis of a resting Doppler arterial waveform permits identification of PAD at a clinically relevant performance level.


Subject(s)
Ankle Brachial Index , Peripheral Arterial Disease , Aged , Aged, 80 and over , Ankle Brachial Index/methods , Arteries , Artificial Intelligence , Humans , Middle Aged , Peripheral Arterial Disease/diagnostic imaging , Predictive Value of Tests , Ultrasonography, Doppler
16.
J Imaging ; 8(5)2022 May 23.
Article in English | MEDLINE | ID: mdl-35621913

ABSTRACT

The analysis and interpretation of cardiac magnetic resonance (CMR) images are often time-consuming. The automated segmentation of cardiac structures can reduce the time required for image analysis. Spatial similarities between different CMR image types were leveraged to jointly segment multiple sequences using a segmentation model termed a multi-image type UNet (MI-UNet). This model was developed from 72 exams (46% female, mean age 63 ± 11 years) performed on patients with hypertrophic cardiomyopathy. The MI-UNet for steady-state free precession (SSFP) images achieved a superior Dice similarity coefficient (DSC) of 0.92 ± 0.06 compared to 0.87 ± 0.08 for a single-image type UNet (p < 0.001). The MI-UNet for late gadolinium enhancement (LGE) images also had a superior DSC of 0.86 ± 0.11 compared to 0.78 ± 0.11 for a single-image type UNet (p = 0.001). The difference across image types was most evident for the left ventricular myocardium in SSFP images and for both the left ventricular cavity and the left ventricular myocardium in LGE images. For the right ventricle, there were no differences in DCS when comparing the MI-UNet with single-image type UNets. The joint segmentation of multiple image types increases segmentation accuracy for CMR images of the left ventricle compared to single-image models. In clinical practice, the MI-UNet model may expedite the analysis and interpretation of CMR images of multiple types.

17.
Cardiovasc Digit Health J ; 3(6): 289-296, 2022 Dec.
Article in English | MEDLINE | ID: mdl-36589312

ABSTRACT

Background: An electrocardiogram (ECG)-based artificial intelligence (AI) algorithm has shown good performance in detecting hypertrophic cardiomyopathy (HCM). However, its application in routine clinical practice may be challenging owing to the low disease prevalence and potentially high false-positive rates. Objective: Identify clinical characteristics associated with true- and false-positive HCM AI-ECG results to improve its clinical application. Methods: We reviewed the records of the 200 patients with highest HCM AI-ECG scores in January 2021 at our institution. Logistic regression was used to create a clinical variable-based "Candidacy for HCM Detection (HCM-DETECT)" score, differentiating true-positive from false-positive AI-ECG results. We validated the HCM-DETECT score in an independent cohort of 200 patients with the highest AI-ECG scores from January 2022. Results: In the 2021 cohort (median age 71 [interquartile range 58-80] years, 48% female), the rates of true-positive, false-positive, and indeterminate AI-ECG results for HCM detection were 36%, 48%, and 16%, respectively. In the 2022 cohort, the rates were 26%, 47%, and 27%, respectively. The HCM-DETECT score included age, coronary artery disease, prior pacemaker, and prior cardiac valve surgery, and had an area under the receiver operating characteristic curve of 0.81 (95% confidence interval 0.73-0.87) for differentiating true- vs false-positive AI results. When the 2022 cohort was limited to HCM detection candidates identified with the HCM-DETECT score, the false-positive AI-ECG rate was reduced from 47% to 13.5%. Conclusion: Application of a clinical score (HCM-DETECT) in tandem with an AI-ECG model improved HCM detection yield, reducing the false-positive rate of AI-ECG more than 3-fold.

18.
Cardiovasc Digit Health J ; 2(5): 264-269, 2021 Oct.
Article in English | MEDLINE | ID: mdl-34734207

ABSTRACT

BACKGROUND: The follow-up of implantable cardioverter-defibrillators (ICDs) generates large amounts of valuable structured and unstructured data embedded in device interrogation reports. OBJECTIVE: We aimed to build a natural language processing (NLP) model for automated capture of ICD-recorded events from device interrogation reports using a single-center cohort of patients with hypertrophic cardiomyopathy (HCM). METHODS: A total of 687 ICD interrogation reports from 247 HCM patients were included. Using a derivation set of 480 reports, we developed a rule-based NLP algorithm based on unstructured (free-text) data from the interpretation field of the ICD reports to identify sustained atrial and ventricular arrhythmias, and ICD therapies. A separate model based on structured numerical tabulated data was also developed. Both models were tested in a separate set of the 207 remaining ICD reports. Diagnostic performance was determined in reference to arrhythmia and ICD therapy annotations generated by expert manual review of the same reports. RESULTS: The NLP system achieved sensitivity 0.98 and 0.99, and F1-scores 0.98 and 0.92 for arrhythmia and ICD therapy events, respectively. In contrast, the performance of the structured data model was significantly lower with sensitivity 0.33 and 0.76, and F1-scores 0.45 and 0.78, for arrhythmia and ICD therapy events, respectively. CONCLUSION: An automated NLP system can capture arrhythmia events and ICD therapies from unstructured device interrogation reports with high accuracy in HCM. These findings demonstrate the feasibility of an NLP paradigm for the extraction of data for clinical care and research from ICD reports embedded in the electronic health record.

19.
Int J Cardiol ; 340: 42-47, 2021 Oct 01.
Article in English | MEDLINE | ID: mdl-34419527

ABSTRACT

BACKGROUND: There is no established screening approach for hypertrophic cardiomyopathy (HCM). We recently developed an artificial intelligence (AI) model for the detection of HCM based on the 12­lead electrocardiogram (AI-ECG) in adults. Here, we aimed to validate this approach of ECG-based HCM detection in pediatric patients (age ≤ 18 years). METHODS: We identified a cohort of 300 children and adolescents with HCM (mean age 12.5 ± 4.6 years, male 68%) who had an ECG and echocardiogram at our institution. Patients were age- and sex-matched to 18,439 non-HCM controls. Diagnostic performance of the AI-ECG model for the detection of HCM was estimated using the previously identified optimal diagnostic threshold of 11% (the probability output derived by the model above which an ECG is considered to belong to an HCM patient). RESULTS: Mean AI-ECG probabilities of HCM were 92% and 5% in the case and control groups, respectively. The area under the receiver operating characteristic curve (AUC) of the AI-ECG model for HCM detection was 0.98 (95% CI 0.98-0.99) with corresponding sensitivity 92% and specificity 95%. The positive and negative predictive values were 22% and 99%, respectively. The model performed similarly in males and females and in genotype-positive and genotype-negative HCM patients. Performance tended to be superior with increasing age. In the age subgroup <5 years, the test's AUC was 0.93. In comparison, the AUC was 0.99 in the age subgroup 15-18 years. CONCLUSIONS: A deep-learning, AI model can detect pediatric HCM with high accuracy from the standard 12­lead ECG.


Subject(s)
Artificial Intelligence , Cardiomyopathy, Hypertrophic , Adolescent , Adult , Cardiomyopathy, Hypertrophic/diagnostic imaging , Child , Child, Preschool , Echocardiography , Electrocardiography , Female , Humans , Male , Mass Screening
20.
J Clin Med ; 10(16)2021 Aug 17.
Article in English | MEDLINE | ID: mdl-34441937

ABSTRACT

With stress echo (SE) 2020 study, a new standard of practice in stress imaging was developed and disseminated: the ABCDE protocol for functional testing within and beyond CAD. ABCDE protocol was the fruit of SE 2020, and is the seed of SE 2030, which is articulated in 12 projects: 1-SE in coronary artery disease (SECAD); 2-SE in diastolic heart failure (SEDIA); 3-SE in hypertrophic cardiomyopathy (SEHCA); 4-SE post-chest radiotherapy and chemotherapy (SERA); 5-Artificial intelligence SE evaluation (AI-SEE); 6-Environmental stress echocardiography and air pollution (ESTER); 7-SE in repaired Tetralogy of Fallot (SETOF); 8-SE in post-COVID-19 (SECOV); 9: Recovery by stress echo of conventionally unfit donor good hearts (RESURGE); 10-SE for mitral ischemic regurgitation (SEMIR); 11-SE in valvular heart disease (SEVA); 12-SE for coronary vasospasm (SESPASM). The study aims to recruit in the next 5 years (2021-2025) ≥10,000 patients followed for ≥5 years (up to 2030) from ≥20 quality-controlled laboratories from ≥10 countries. In this COVID-19 era of sustainable health care delivery, SE2030 will provide the evidence to finally recommend SE as the optimal and versatile imaging modality for functional testing anywhere, any time, and in any patient.

SELECTION OF CITATIONS
SEARCH DETAIL
...