Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
J Allergy Clin Immunol ; 153(5): 1330-1343, 2024 May.
Article in English | MEDLINE | ID: mdl-38369029

ABSTRACT

BACKGROUND: The development of atopic dermatitis (AD) drugs is challenged by many disease phenotypes and trial design options, which are hard to explore experimentally. OBJECTIVE: We aimed to optimize AD trial design using simulations. METHODS: We constructed a quantitative systems pharmacology model of AD and standard of care (SoC) treatments and generated a phenotypically diverse virtual population whose parameter distribution was derived from known relationships between AD biomarkers and disease severity and calibrated using disease severity evolution under SoC regimens. RESULTS: We applied this workflow to the immunomodulator OM-85, currently being investigated for its potential use in AD, and calibrated the investigational treatment model with the efficacy profile of an existing trial (thereby enriching it with plausible marker levels and dynamics). We assessed the sensitivity of trial outcomes to trial protocol and found that for this particular example the choice of end point is more important than the choice of dosing regimen and patient selection by model-based responder enrichment could increase the expected effect size. A global sensitivity analysis revealed that only a limited subset of baseline biomarkers is needed to predict the drug response of the full virtual population. CONCLUSIONS: This AD quantitative systems pharmacology workflow built around knowledge of marker-severity relationships as well as SoC efficacy can be tailored to specific development cases to optimize several trial protocol parameters and biomarker stratification and therefore has promise to become a powerful model-informed AD drug development and personalized medicine tool.


Subject(s)
Biomarkers , Clinical Trials as Topic , Dermatitis, Atopic , Dermatitis, Atopic/drug therapy , Humans , Network Pharmacology , Workflow , Immunologic Factors/therapeutic use , Immunologic Factors/pharmacology , Computer Simulation , Research Design , Severity of Illness Index
2.
Nat Commun ; 13(1): 1980, 2022 04 13.
Article in English | MEDLINE | ID: mdl-35418135

ABSTRACT

Respiratory disease trials are profoundly affected by non-pharmaceutical interventions (NPIs) against COVID-19 because they perturb existing regular patterns of all seasonal viral epidemics. To address trial design with such uncertainty, we developed an epidemiological model of respiratory tract infection (RTI) coupled to a mechanistic description of viral RTI episodes. We explored the impact of reduced viral transmission (mimicking NPIs) using a virtual population and in silico trials for the bacterial lysate OM-85 as prophylaxis for RTI. Ratio-based efficacy metrics are only impacted under strict lockdown whereas absolute benefit already is with intermediate NPIs (eg. mask-wearing). Consequently, despite NPI, trials may meet their relative efficacy endpoints (provided recruitment hurdles can be overcome) but are difficult to assess with respect to clinical relevance. These results advocate to report a variety of metrics for benefit assessment, to use adaptive trial design and adapted statistical analyses. They also question eligibility criteria misaligned with the actual disease burden.


Subject(s)
COVID-19 , Respiration Disorders , Respiratory Tract Infections , Virus Diseases , COVID-19/prevention & control , Clinical Trials as Topic , Communicable Disease Control/methods , Humans , Respiratory Tract Infections/epidemiology , SARS-CoV-2 , Virus Diseases/epidemiology
3.
Nat Commun ; 12(1): 842, 2021 02 08.
Article in English | MEDLINE | ID: mdl-33558542

ABSTRACT

Discovering autocatalytic chemistries that can evolve is a major goal in systems chemistry and a critical step towards understanding the origin of life. Autocatalytic networks have been discovered in various chemistries, but we lack a general understanding of how network topology controls the Darwinian properties of variation, differential reproduction, and heredity, which are mediated by the chemical composition. Using barcoded sequencing and droplet microfluidics, we establish a landscape of thousands of networks of RNAs that catalyze their own formation from fragments, and derive relationships between network topology and chemical composition. We find that strong variations arise from catalytic innovations perturbing weakly connected networks, and that growth increases with global connectivity. These rules imply trade-offs between reproduction and variation, and between compositional persistence and variation along trajectories of network complexification. Overall, connectivity in reaction networks provides a lever to balance variation (to explore chemical states) with reproduction and heredity (persistence being necessary for selection to act), as required for chemical evolution.


Subject(s)
Biocatalysis , Metabolic Networks and Pathways , RNA/metabolism
4.
Nucleic Acids Res ; 46(18): 9660-9666, 2018 10 12.
Article in English | MEDLINE | ID: mdl-29982824

ABSTRACT

The ability to process molecules available in the environment into useable building blocks characterizes catabolism in contemporary cells and was probably critical for the initiation of life. Here we show that a catabolic process in collectively autocatalytic sets of RNAs allows diversified substrates to be assimilated. We modify fragments of the Azoarcus group I intron and find that the system is able to restore the original native fragments by a multi-step reaction pathway. This allows in turn the formation of catalysts by an anabolic process, eventually leading to the accumulation of ribozymes. These results demonstrate that rudimentary self-reproducing RNA systems based on recombination possess an inherent capacity to assimilate an expanded repertoire of chemical resources and suggest that coupled catabolism and anabolism could have arisen at a very early stage in primordial living systems.


Subject(s)
RNA, Bacterial/metabolism , RNA, Catalytic/metabolism , Azoarcus/genetics , Azoarcus/metabolism , Catalysis , Gene Expression Regulation, Bacterial , Homeostasis , Metabolic Networks and Pathways/genetics , Metabolism , Nucleic Acid Conformation , RNA, Bacterial/chemistry , RNA, Bacterial/classification , RNA, Catalytic/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...