Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Vet Res Commun ; 48(3): 1641-1658, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38453821

ABSTRACT

Early weaning is an important stressor that impairs the piglet´s health, and essential oils appear as promising candidates to improve it instead of antibiotics. The aim of this study was to evaluate the effect of oral supplementation of free and nanoencapsulated Minthostachys verticillata essential oil (EO and NEO, respectively) on immunological, biochemical and antioxidants parameters as well as on gut microbiota in weaned piglets. EO was extracted by hydrodistillation and nanoencapsulation was performed by high-energy method using Tween 80 and Span 60 as surfactants. EO and NEO were chemically analyzed by gas chromatography-mass spectrometry (GC-MS). The cytotoxic effects of both EO and NEO was evaluated on Caco-2 cell line. For in vivo assay, male weaned piglets (age: 28 days, mean initial body weight: 11.63 ± 0.37 kg) were randomly distributed in six groups of six animals each (n = 6) and received orally EO (10.0 mg/kg/day) or NEO (2.5, 5.0 and 10.0 mg/kg/day), named hereinafter as EO-10, NEO-2.5, NEO-5 and NEO-10, for 30 consecutive days. Animals not treated or treated with surfactants mixture were evaluated as control and vehicle control. Subsequently, histological, hematological and biochemical parameters, cytokines production, oxidative markers, CD4+/CD8+ T cells and gut microbiota were evaluated. GC-MS analysis was similar in both EO and NEO. The NEO was more toxic on Caco-2 cells than EO. Oral supplementation of EO-10 or NEO-10 improved growth performance compared to control group NEO-2.5 or NEO-5 (p < 0.05) groups. NEO-2.5, NEO-5 and NEO-10 did not alter the morpho-physiology of digestive organs and decreased malondialdehyde (MDA) levels in liver compared to control (p < 0.05) or EO-10 groups (p < 0.05, p < 0.01). In addition, NEO-10 showed an increase in CD4+/CD8+ T cells ratio (p < 0.001), and induced the highest serum levels of IL-10 (p < 0.01). Serum triglycerides levels were significantly lower in animals treated with EO-10 or NEO-2.5, NEO-5 and NEO-10 compared to control group (p < 0.001). Gut microbiota analysis showed that NEO-10 favor the development of beneficial intestinal microorganisms to improve parameters related to early weaning of piglets. In conclusion, EO and NEO improved parameters altered by early weaning in piglets however, NEO was safer and powerful. Therefore, NEO should be further studied to be applied in swine health.


Subject(s)
Animal Feed , Antioxidants , Dietary Supplements , Gastrointestinal Microbiome , Oils, Volatile , Animals , Gastrointestinal Microbiome/drug effects , Oils, Volatile/pharmacology , Oils, Volatile/administration & dosage , Oils, Volatile/chemistry , Antioxidants/pharmacology , Male , Dietary Supplements/analysis , Swine , Animal Feed/analysis , Caco-2 Cells , Weaning , Diet/veterinary , Humans , Administration, Oral
2.
J Ethnopharmacol ; 290: 115078, 2022 May 23.
Article in English | MEDLINE | ID: mdl-35157954

ABSTRACT

ETHNOPHARMACOLOGICAL RELEVANCE: Minthostachys verticillata (Griseb.) Epling (Lamiaceae) is a plant used in folk medicine for digestive or respiratory disorders. In addition, it is incorporated as condiment, in foods, as beverage flavoring or mate. The ethnopharmacological interest of M. verticillata resides in its essential oil (EO). Part of group has demonstrated the immunomodulatory ability of EO giving this oil a biological potential not known until that moment and conducted studies to evaluate their possible application in diseases of veterinary interest. However, the immunomodulatory effects of EO administered orally have not been fully characterized. AIM OF THE STUDY: This study evaluated the impact of EO oral administration on gastrointestinal and immune health through measurement of immunological and oxidative parameters in mice. MATERIAL AND METHODS: The EO was extracted from the leaves, slender stems and flowers of M. verticillata by hydrodistillation and chemical analyzed by gas chromatography-mass spectrometry (GC-MS). Prior to in vivo study, the cytotoxic effect of EO was determined using the human colon carcinoma Caco-2 cell line. For in vivo study, three groups of male Balb/c mice (n = 3) were orally administered with saline solution (control group) and EO (5 or 10 mg/kg/day) during 10 consecutive days. Subsequently, histological and hematological parameters, cytokines production, oxidative markers and CD4+ and CD8+ T cells were evaluated. RESULTS: The chemical analysis of EO revealed the presence of a high content of monoterpenes, being the main pulegone (76.12%) and menthone (14.28%). The EO oral administration improved mice growth performance and modulated systemic adaptive immune response by increasing in the total leukocyte number. A high percentage of CD4+ T cells were observed whereas the number of CD8+ T cells was not altered. EO did not alter the morpho-physiology of intestine and improved total antioxidant capacity by decreasing MDA concentrations. In addition, EO decreased the IL-6 levels and increased in the IL-4 and IL-10 concentrations. CONCLUSION: Results indicate that M. verticillata EO modulate inflammatory and oxidative parameters constituting a natural alternative which could be applied to improve gastrointestinal and immune functionality in animals.


Subject(s)
Digestive System/drug effects , Immune System/drug effects , Lamiaceae , Oils, Volatile/pharmacology , Animals , Blood/drug effects , CD4-Positive T-Lymphocytes/drug effects , CD8-Positive T-Lymphocytes/drug effects , Cell Line, Tumor , Cytokines/drug effects , Dose-Response Relationship, Drug , Humans , Interleukin-10/metabolism , Interleukin-4/metabolism , Interleukin-6/metabolism , Male , Medicine, Traditional , Mice , Mice, Inbred BALB C , Monoterpenes/chemistry , Monoterpenes/pharmacology , Oxidative Stress/drug effects
SELECTION OF CITATIONS
SEARCH DETAIL
...