Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
J Adv Model Earth Syst ; 14(11): e2022MS003040, 2022 Nov.
Article in English | MEDLINE | ID: mdl-36582299

ABSTRACT

Representation of irrigation in Earth System Models has advanced over the past decade, yet large uncertainties persist in the effective simulation of irrigation practices, particularly over locations where the on-ground practices and climate impacts are less reliably known. Here we investigate the utility of assimilating remotely sensed vegetation data for improving irrigation water use and associated fluxes within a land surface model. We show that assimilating optical sensor-based leaf area index estimates significantly improves the simulation of irrigation water use when compared to the USGS ground reports. For heavily irrigated areas, assimilation improves the evaporative fluxes and gross primary production (GPP) simulations, with the median correlation increasing by 0.1-1.1 and 0.3-0.6, respectively, as compared to the reference datasets. Further, bias improvements in the range of 14-35 mm mo-1 and 10-82 g m-2 mo-1 are obtained in evaporative fluxes and GPP as a result of incorporating vegetation constraints, respectively. These results demonstrate that the use of remotely sensed vegetation data is an effective, observation-informed, globally applicable approach for simulating irrigation and characterizing its impacts on water and carbon states.

2.
J Hydrometeorol ; 20(8): 1595-1617, 2019 Aug.
Article in English | MEDLINE | ID: mdl-32908457

ABSTRACT

Terrestrial hydrologic trends over the conterminous United States are estimated for 1980-2015 using the National Climate Assessment Land Data Assimilation System (NCA-LDAS) reanalysis. NCA-LDAS employs the uncoupled Noah version 3.3 land surface model at 0.125°× 1258° forced with NLDAS-2 meteorology, rescaled Climate Prediction Center precipitation, and assimilated satellite-based soil moisture, snow depth, and irrigation products. Mean annual trends are reported using the nonparametric Mann-Kendall test at p < 0.1 significance. Results illustrate the interrelationship between regional gradients in forcing trends and trends in other land energy and water stores and fluxes. Mean precipitation trends range from +3 to +9 mm yr-1 in the upper Great Plains and Northeast to -1 to -9 mm yr-1 in the West and South, net radiation flux trends range from 10.05 to 10.20 W m-2 yr-1 in the East to -0.05 to -0.20 W m-2 yr-1 in the West, and U.S.-wide temperature trends average about +0.03 K yr-1. Trends in soil moisture, snow cover, latent and sensible heat fluxes, and runoff are consistent with forcings, contributing to increasing evaporative fraction trends from west to east. Evaluation of NCA-LDAS trends compared to independent data indicates mixed results. The RMSE of U.S.-wide trends in number of snow cover days improved from 3.13 to 2.89 days yr-1 while trend detection increased 11%. Trends in latent heat flux were hardly affected, with RMSE decreasing only from 0.17 to 0.16 W m-2 yr-1, while trend detection increased 2%. NCA-LDAS runoff trends degraded significantly from 2.6 to 16.1 mm yr-1 while trend detection was unaffected. Analysis also indicated that NCA-LDAS exhibits relatively more skill in low precipitation station density areas, suggesting there are limits to the effectiveness of satellite data assimilation in densely gauged regions. Overall, NCA-LDAS demonstrates capability for quantifying physically consistent, U.S. hydrologic climate trends over the satellite era.

3.
J Hydrol (Amst) ; 555: 535-546, 2017 Dec.
Article in English | MEDLINE | ID: mdl-32647388

ABSTRACT

Improved understanding of the water balance in the Blue Nile is of critical importance because of increasingly frequent hydroclimatic extremes under a changing climate. The intercomparison and evaluation of multiple land surface models (LSMs) associated with different meteorological forcing and precipitation datasets can offer a moderate range of water budget variable estimates. In this context, two LSMs, Noah version 3.3 (Noah3.3) and Catchment LSM version Fortuna 2.5 (CLSMF2.5) coupled with the Hydrological Modeling and Analysis Platform (HyMAP) river routing scheme are used to produce hydrological estimates over the region. The two LSMs were forced with different combinations of two reanalysis-based meteorological datasets from the Modern-Era Retrospective analysis for Research and Applications datasets (i.e., MERRA-Land and MERRA-2) and three observation-based precipitation datasets, generating a total of 16 experiments. Modeled evapotranspiration (ET), streamflow, and terrestrial water storage estimates were evaluated against the Atmosphere-Land Exchange Inverse (ALEXI) ET, in-situ streamflow observations, and NASA Gravity Recovery and Climate Experiment (GRACE) products, respectively. Results show that CLSMF2.5 provided better representation of the water budget variables than Noah3.3 in terms of Nash-Sutcliffe coefficient when considering all meteorological forcing datasets and precipitation datasets. The model experiments forced with observation-based products, the Climate Hazards group Infrared Precipitation with Stations (CHIRPS) and the Tropical Rainfall Measuring Mission (TRMM) Multi-Satellite Precipitation Analysis (TMPA), outperform those run with MERRA-Land and MERRA-2 precipitation. The results presented in this paper would suggest that the Famine Early Warning Systems Network (FEWS NET) Land Data Assimilation System incorporate CLSMF2.5 and HyMAP routing scheme to better represent the water balance in this region.

4.
Int J Appl Earth Obs Geoinf ; 48: 96-109, 2016 Jun.
Article in English | MEDLINE | ID: mdl-29599664

ABSTRACT

To assess growing season conditions where ground based observations are limited or unavailable, food security and agricultural drought monitoring analysts rely on publicly available remotely sensed rainfall and vegetation greenness. There are also remotely sensed soil moisture observations from missions like the European Space Agency (ESA) Soil Moisture and Ocean Salinity (SMOS) and NASA's Soil Moisture Active Passive (SMAP), however these time series are still too short to conduct studies that demonstrate the utility of these data for operational applications, or to provide historical context for extreme wet or dry events. To promote the use of remotely sensed soil moisture in agricultural drought and food security monitoring, we use East Africa as a case study to evaluate the quality of a 30+ year time series of merged active-passive microwave soil moisture from the ESA Climate Change Initiative (CCI-SM). Compared to the Normalized Difference Vegetation index (NDVI) and modeled soil moisture products, we found substantial spatial and temporal gaps in the early part of the CCI-SM record, with adequate data coverage beginning in 1992. From this point forward, growing season CCI-SM anomalies were well correlated (R>0.5) with modeled, seasonal soil moisture, and in some regions, NDVI. We use correlation analysis and qualitative comparisons at seasonal time scales to show that remotely sensed soil moisture can add information to a convergence of evidence framework that traditionally relies on rainfall and NDVI in moderately vegetated regions.

SELECTION OF CITATIONS
SEARCH DETAIL
...