Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
ACS Omega ; 9(1): 545-558, 2024 Jan 09.
Article in English | MEDLINE | ID: mdl-38222644

ABSTRACT

The effect of Ga-substitution on bismuth ferrite BiGaxFe1-xO3 (x = 0, 0.05, 0.10, 0.15, 0.20, and 0.25) properties was investigated, which was fabricated using a microemulsion route. X-ray diffraction analysis confirmed that specimens had a single-phase rhombohedral structure with space group R3̅c. The concentration of Ga had an impact on various properties such as structural parameters, crystalline size, porosity, and unit cell volume. The samples exhibited notable values for the dielectric constant, tangent loss, and dielectric loss in the low-frequency range, which declined as the frequency increased due to different polarizations. The increment in the AC conductivity was associated with rise in frequency. The P-E loops demonstrated that the samples became more resistive as the Ga concentration increased. The retentivity (Mr) and saturation magnetization (Ms) values reduced as the Ga content increased, although all samples had Hc values within the range for electromagnetic materials. The Ga-substitution had a synergistic effect on the electrochemical characteristics of BiGaxFe1-xO3, resulting in greater conductivity than that of undoped BiFeO3. These enhanced properties contributed to their higher photocatalytic activity in the degradation of crystal violet under visible light irradiation. The doped BiGaxFe1-xO3 exhibited 79% dye degradation after 90 min of illumination compared to 54% for pure BiFeO3. Recycling experiments confirmed the stability and reusability of the synthesized nanoparticles. The antibacterial activity of the samples was certified against various microbes, and the doped BiGaxFe1-xO3 showed promising activity. Thus, doped materials are good candidates for memories, dielectric resonators, and photovoltaics because of their high dielectric constant and AC conductivity, while their higher photocatalytic activity under visible light makes them promising photocatalysts for removing noxious and harmful effluents from wastewaters.

2.
Liver Int ; 32(8): 1200-10, 2012 Sep.
Article in English | MEDLINE | ID: mdl-22530772

ABSTRACT

'Alarmins' are a group of proteins or molecules that are released from cells during cellular demise to alert the host immune system. Two of them, Interleukin-33 (IL-33) and high-mobility group box-1 (HMGB1), share many similarities of cellular localization, functions and involvement in various inflammatory pathologies including hepatitis. The expressions of IL-33 and HMGB1, and their receptors ST2 and receptor for advanced glycation end products (RAGE), are substantially up-regulated during acute and chronic hepatitis. Recent data evidence a possible protective role of IL-33/ST2 axis during liver injury. A contrast in expression of IL-33 and HMGB1 alarmins were associated with type of hepatocellular death mediated by immune cells or hepato-toxic agents. The massive release of active form of IL-33 from hepatocytes may affect the recruitment and activation of its ST2-positive target immune cells in the liver to confer its alarmin functions. This review highlights the emerging roles of alarmin proteins in various liver pathologies, by focusing on classical HMGB1 and a newly discovered alarmin, the IL-33.


Subject(s)
Cell Death/immunology , HMGB1 Protein/immunology , Hepatitis, Chronic/immunology , Interleukins/immunology , Liver/immunology , Animals , HMGB1 Protein/metabolism , Hepatitis, Chronic/metabolism , Hepatitis, Chronic/pathology , Humans , Interleukin-33 , Interleukins/metabolism , Liver/metabolism , Liver/pathology
3.
Eur J Immunol ; 41(8): 2341-8, 2011 Aug.
Article in English | MEDLINE | ID: mdl-21557213

ABSTRACT

Interleukin-33 (IL-33) is thought to be released during cellular death as an alarming cytokine during the acute phase of disease, but its regulation in vivo is poorly understood. We investigated the expression of IL-33 in two mouse models of acute hepatitis by administering either carbon tetrachloride (CCl(4) ) or concanavalin A (ConA). IL-33 was overexpressed in both models but with a stronger induction in ConA-induced hepatitis. IL-33 was weakly expressed in vascular and sinusoidal endothelial cells from normal liver and was clearly induced in CCl(4) -treated mice. Surprisingly, we found that hepatocytes strongly expressed IL-33 exclusively in the ConA model. CD1d knock-out mice, which are deficient in NKT cells and resistant to ConA-induced hepatitis, no longer expressed IL-33 in hepatocytes following ConA administration. Interestingly, invariant NKT (iNKT) cells adoptively transferred into ConA-treated CD1d KO mouse restored IL-33 expression in hepatocytes. This strongly suggests that NKT cells are responsible for the induction of IL-33 in hepatocytes.


Subject(s)
Hepatitis, Animal/genetics , Hepatocytes/metabolism , Interleukins/genetics , Natural Killer T-Cells/metabolism , Acute Disease , Adoptive Transfer , Animals , Antigens, CD1d/genetics , Antigens, CD1d/metabolism , Carbon Tetrachloride , Concanavalin A , Female , Flow Cytometry , Fluorescent Antibody Technique , Gene Expression , Hepatitis, Animal/chemically induced , Hepatitis, Animal/metabolism , Hepatocytes/drug effects , Hepatocytes/pathology , Interleukin-1beta/genetics , Interleukin-1beta/metabolism , Interleukin-33 , Interleukin-6/genetics , Interleukin-6/metabolism , Interleukins/metabolism , Liver/drug effects , Liver/metabolism , Liver/pathology , Male , Mice , Mice, Inbred BALB C , Mice, Knockout , Reverse Transcriptase Polymerase Chain Reaction , Tumor Necrosis Factor-alpha/genetics , Tumor Necrosis Factor-alpha/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...