Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters











Database
Language
Publication year range
1.
Nat Genet ; 49(6): 866-875, 2017 Jun.
Article in English | MEDLINE | ID: mdl-28436985

ABSTRACT

The identity of the RNA-binding proteins (RBPs) that govern cancer stem cells remains poorly characterized. The MSI2 RBP is a central regulator of translation of cancer stem cell programs. Through proteomic analysis of the MSI2-interacting RBP network and functional shRNA screening, we identified 24 genes required for in vivo leukemia. Syncrip was the most differentially required gene between normal and myeloid leukemia cells. SYNCRIP depletion increased apoptosis and differentiation while delaying leukemogenesis. Gene expression profiling of SYNCRIP-depleted cells demonstrated a loss of the MLL and HOXA9 leukemia stem cell program. SYNCRIP and MSI2 interact indirectly though shared mRNA targets. SYNCRIP maintains HOXA9 translation, and MSI2 or HOXA9 overexpression rescued the effects of SYNCRIP depletion. Altogether, our data identify SYNCRIP as a new RBP that controls the myeloid leukemia stem cell program. We propose that targeting these RBP complexes might provide a novel therapeutic strategy in leukemia.


Subject(s)
Gene Expression Regulation, Leukemic , Heterogeneous-Nuclear Ribonucleoproteins/genetics , Leukemia, Myeloid/genetics , RNA-Binding Proteins/metabolism , Animals , Cell Survival , Female , Hematopoiesis/genetics , Heterogeneous-Nuclear Ribonucleoproteins/metabolism , Homeodomain Proteins/genetics , Humans , Leukemia, Biphenotypic, Acute/genetics , Leukemia, Biphenotypic, Acute/pathology , Leukemia, Myeloid/pathology , Mice, Inbred C57BL , Mice, Knockout , Myeloid Progenitor Cells/metabolism , Myeloid Progenitor Cells/pathology , RNA, Small Interfering , RNA-Binding Proteins/genetics , Xenograft Model Antitumor Assays
2.
BMC Genomics ; 12: 574, 2011 Nov 23.
Article in English | MEDLINE | ID: mdl-22111877

ABSTRACT

BACKGROUND: Anopheles gambiae is the primary mosquito vector of human malaria parasites in sub-Saharan Africa. To date, three innate immune signaling pathways, including the nuclear factor (NF)-kappaB-dependent Toll and immune deficient (IMD) pathways and the Janus kinase/signal transducers and activators of transcription (Jak-STAT) pathway, have been extensively characterized in An. gambiae. However, in addition to NF-kappaB-dependent signaling, three mitogen-activated protein kinase (MAPK) pathways regulated by JNK, ERK and p38 MAPK are critical mediators of innate immunity in other invertebrates and in mammals. Our understanding of the roles of the MAPK signaling cascades in anopheline innate immunity is limited, so identification of the encoded complement of these proteins, their upstream activators, and phosphorylation profiles in response to relevant immune signals was warranted. RESULTS: In this study, we present the orthologs and phylogeny of 17 An. gambiae MAPKs, two of which were previously unknown and two others that were incompletely annotated. We also provide detailed temporal activation profiles for ERK, JNK, and p38 MAPK in An. gambiae cells in vitro to immune signals that are relevant to malaria parasite infection (human insulin, human transforming growth factor-beta1, hydrogen peroxide) and to bacterial lipopolysaccharide. These activation profiles and possible upstream regulatory pathways are interpreted in light of known MAPK signaling cascades. CONCLUSIONS: The establishment of a MAPK "road map" based on the most advanced mosquito genome annotation can accelerate our understanding of host-pathogen interactions and broader physiology of An. gambiae and other mosquito species. Further, future efforts to develop predictive models of anopheline cell signaling responses, based on iterative construction and refinement of data-based and literature-based knowledge of the MAP kinase cascades and other networked pathways will facilitate identification of the "master signaling regulators" in biomedically important mosquito species.


Subject(s)
Anopheles/enzymology , Anopheles/genetics , Mitogen-Activated Protein Kinases/genetics , Phylogeny , Animals , Anopheles/immunology , Cell Line , Computational Biology , Extracellular Signal-Regulated MAP Kinases/genetics , Extracellular Signal-Regulated MAP Kinases/metabolism , Humans , Immunity, Innate , JNK Mitogen-Activated Protein Kinases/genetics , JNK Mitogen-Activated Protein Kinases/metabolism , MAP Kinase Signaling System , Mitogen-Activated Protein Kinases/metabolism , Phosphorylation , p38 Mitogen-Activated Protein Kinases/genetics , p38 Mitogen-Activated Protein Kinases/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL