Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 23
Filter
Add more filters










Publication year range
1.
J Mater Chem A Mater ; 11(40): 21884-21894, 2023 Oct 17.
Article in English | MEDLINE | ID: mdl-38013680

ABSTRACT

Mordenite (MOR) zeolite, an important industrial catalyst exists in two, isostructural variants defined by their port-size, small and large-port. Here we show for the first time how a systematic, single-parameter variation influences the synthesis out-come on the final MOR material leading to distinctly different catalysts. The cation identity has a direct impact on the synthesis mechanism with potassium cations generating the more constrained, small-port MOR variant compared to the large-port obtained with sodium cations. This was expressed by different degrees of accessibility ascertained with a combination of toluene breakthrough and temperature programmed desorption (TPD), propylamine TPD, as well as sterically sensitive isobutane conversion. Rietveld refinement of the X-ray diffractograms elucidated the preferential siting of the smaller sodium cations in the constricted 8-ring, from which differences in Al distribution follow. Note, there are no organic structure directing agents utilized in this synthesis pointing at the important role of inorganic structure directing agents (ISDA).

2.
ACS Phys Chem Au ; 3(4): 394-405, 2023 Jul 26.
Article in English | MEDLINE | ID: mdl-37520313

ABSTRACT

Local Na-coordination and dynamics of Na2-xZn2-xGaxTeO6; x = 0.00 (NZTO), 0.05, 0.10, 0.15, 0.20, were studied by variable-temperature, 23Na NMR methods and DFT AIMD simulations. Structure and dynamics were probed by NMR in the temperature ranges of 100-293 K in a magnetic field of 18.8 T and from 293 up to 500 K in a magnetic field of 11.7 T. Line shapes and T1 relaxation constants were analyzed. At 100 K, the otherwise dynamic Na-ions are frozen out on the NMR time scale, and a local structure characterization was performed for Na-ions at three interlayer sites. On increasing the temperature, complex peak shape coalescences occurred, and at 293 K, the Na NMR spectra showed some averaging due to Na-ion dynamics. A further increase to 500 K did not reveal any new peak shape variations until the highest temperatures, where an apparent peak splitting was observed, similar to what was observed in the 18.8 T experiments at lower temperatures. A three-site exchange model coupled with reduced quadrupolar couplings due to dynamics appear to explain these peak shape observations. The Ga substitution increases the Na-jumping rate, as proved by relaxation measurements and by a decrease in temperature for peak coalescence. The estimated activation energy for Na dynamics in the NZTO sample, from relaxation measurements, corresponds well to results from DFT AIMD simulations. Upon Ga substitution, measured activation energies are reduced, which is supported, in part, by DFT calculations. Addressing the correlated motion of Na-ions appears important for solid-state ion conductors since benefits can be gained from the decrease in activation energy upon Ga substitution, for example.

3.
Nat Commun ; 14(1): 1063, 2023 02 24.
Article in English | MEDLINE | ID: mdl-36828821

ABSTRACT

Lytic polysaccharide monooxygenases (LPMOs) catalyze oxidative cleavage of crystalline polysaccharides such as cellulose and are crucial for the conversion of plant biomass in Nature and in industrial applications. Sunlight promotes microbial conversion of plant litter; this effect has been attributed to photochemical degradation of lignin, a major redox-active component of secondary plant cell walls that limits enzyme access to the cell wall carbohydrates. Here, we show that exposing lignin to visible light facilitates cellulose solubilization by promoting formation of H2O2 that fuels LPMO catalysis. Light-driven H2O2 formation is accompanied by oxidation of ring-conjugated olefins in the lignin, while LPMO-catalyzed oxidation of phenolic hydroxyls leads to the required priming reduction of the enzyme. The discovery that light-driven abiotic reactions in Nature can fuel H2O2-dependent redox enzymes involved in deconstructing lignocellulose may offer opportunities for bioprocessing and provides an enzymatic explanation for the known effect of visible light on biomass conversion.


Subject(s)
Cellulose , Mixed Function Oxygenases , Cellulose/metabolism , Mixed Function Oxygenases/metabolism , Lignin/metabolism , Hydrogen Peroxide/metabolism , Polysaccharides/metabolism , Oxidation-Reduction , Light
4.
Inorg Chem ; 61(33): 13067-13076, 2022 Aug 22.
Article in English | MEDLINE | ID: mdl-35944025

ABSTRACT

In the work presented here, we prepared Ga-substituted NZTO (Na2-xZn2-xGaxTeO6, x = 0.00, 0.05, 0.10, 0.15, 0.20) layered materials with a soft chemical, citric acid-based synthesis method and characterized these by means of X-ray diffraction (XRD), 23Na and 125Te NMR, and by density functional theory (DFT) modeling. The influence of randomly distributed Ga cations on the 125Te NMR spectra confirms the successful synthesis. With DFT-based linear response computations, we show that the local distribution of Na ions in the two neighboring interlayers influences the 125Te chemical shift, consistent with observations. DFT modeling suggests that some of the Na sites are rarely occupied in pure NZTO but become favorable upon Ga substitution. There are clear indications that Ga substitution gives an uneven distribution of Na ions in neighboring interlayers and that the Na structure in one layer affects the adjacent layers.


Subject(s)
Sodium , Zinc , Ions , Magnetic Resonance Spectroscopy , Sodium/chemistry , X-Ray Diffraction
5.
Chem Sci ; 12(3): 1126-1146, 2020 Nov 18.
Article in English | MEDLINE | ID: mdl-34163880

ABSTRACT

A Monte Carlo crystal growth simulation tool, CrystalGrower, is described which is able to simultaneously model both the crystal habit and nanoscopic surface topography of any crystal structure under conditions of variable supersaturation or at equilibrium. This tool has been developed in order to permit the rapid simulation of crystal surface maps generated by scanning probe microscopies in combination with overall crystal habit. As the simulation is based upon a coarse graining at the nanoscopic level features such as crystal rounding at low supersaturation or undersaturation conditions are also faithfully reproduced. CrystalGrower permits the incorporation of screw dislocations with arbitrary Burgers vectors and also the investigation of internal point defects in crystals. The effect of growth modifiers can be addressed by selective poisoning of specific growth sites. The tool is designed for those interested in understanding and controlling the outcome of crystal growth through a deeper comprehension of the key controlling experimental parameters.

6.
RSC Adv ; 10(48): 29018-29030, 2020 Aug 03.
Article in English | MEDLINE | ID: mdl-35520046

ABSTRACT

Fused silica crucibles are commonly used in the fabrication process of solar grade silicon ingots. These crucibles are manufactured from high purity natural quartz sand and as a consequence, their properties are influenced by the presence of water and hydroxyls in the raw quartz. In this work, diffuse reflectance IR, 1H magic angle spinning NMR, and Raman spectroscopy were used to investigate the influence of thermal treatment on water and hydroxyl groups in high purity natural quartz sand. Most of the water in dry sand is present in the form of closed inclusions within the quartz grains which were detected in Raman imaging studies, even after thermally treating the samples at 600 °C. Only after heating to 900 °C did this water completely vanish, most likely as a result of rupturing of the inclusions. However, newly formed OH groups, identified as isolated and hydrogen bound OH were observed as products of the reaction between water and quartz. Similarly, liquid water was observed in NMR spectra even after treatment at 600 °C while at temperatures >900 °C, only non-interacting silanol groups were present. The comparison of the temperature dependence of the IR and NMR spectra also yields insight into the assignment of the OH stretching mode region of the IR spectrum in this system. The intensity of water related bands decreases while the intensity of OH bands first increases and then decreases with increasing temperature. The band intensity of Al-rich defects as well as the characteristic feature at 3200 cm-1 does not follow the temperature dependence of typical water peaks. It is also shown that leaching the quartz sand in HF solution helps to remove water from inclusions, likely by forming pathways for fluid flow inside the quartz grains. Milling of the samples caused formation of an additional type of hydroxyl group, possibly due to partial amorphisation of the surfaces of the quartz grains surface during the process. The results improve the basis for a knowledge-based processes development for the processing of high purity natural quartz.

7.
J Am Chem Soc ; 140(45): 15270-15278, 2018 11 14.
Article in English | MEDLINE | ID: mdl-30346154

ABSTRACT

The direct conversion of methane to methanol (MTM) is a reaction that has the potential to disrupt a great part of the synthesis gas-derived chemical industry. However, despite many decades of research, active enough catalysts and suitable processes for industrial application are still not available. Recently, several copper-exchanged zeolites have shown considerable activity and selectivity in the direct MTM reaction. Understanding the nature of the active site in these materials is essential for any further development in the field. Herein, we apply multivariate curve resolution analysis of X-ray absorption spectroscopy data to accurately quantify the fraction of active Cu in Cu-MOR (MOR = mordenite), allowing an unambiguous determination of the active site nuclearity as a dicopper site. By rationalizing the compositional parameters and reaction conditions, we achieve the highest methanol yield per Cu yet reported for MTM over Cu-zeolites, of 0.47 mol/mol.

8.
Chemphyschem ; 19(4): 519-528, 2018 02 19.
Article in English | MEDLINE | ID: mdl-29077254

ABSTRACT

In situ flow magic-angle spinning nuclear magnetic resonance (MAS NMR) spectroscopy and synchrotron-based pair distribution function (PDF) analyses were applied to study water's interactions with the Brønsted acidic site and the surrounding framework in the SAPO-34 catalyst at temperatures up to 300 °C for NMR spectroscopy and 700 °C for PDF. 29 Si enrichment of the sample enabled detailed NMR spectroscopy investigations of the T-atom generating the Brønsted site. By NMR spectroscopy, we observed dehydration above 100 °C and a coalescence of Si peaks due to local framework adjustments. Towards 300 °C, the NMR spectroscopy data indicated highly mobile acidic protons. In situ total X-ray scattering measurements analyzed by PDF showed clear changes in the Al local environment in the 250-300 °C region, as the Al-O bond lengths showed a sudden change. This fell within the same temperature range as the increased Brønsted proton mobility. We suggest that the active site in this catalyst under industrial conditions comprises not only the Brønsted proton but also SiO4 . To the best of our knowledge, this is the first work proposing a structural model of a SAPO catalyst by atomic PDF analysis. The combination of synchrotron PDF analysis with in situ NMR spectroscopy is promising in revealing the dynamic features of a working catalyst.

9.
J Am Chem Soc ; 139(51): 18681-18687, 2017 12 27.
Article in English | MEDLINE | ID: mdl-29185334

ABSTRACT

Ion-ion interactions in supercapacitor (SC) electrolytes are considered to have significant influence over the charging process and therefore the overall performance of the SC system. Current strategies used to weaken ionic interactions can enhance the power of SCs, but consequently, the energy density will decrease due to the increased distance between adjacent electrolyte ions at the electrode surface. Herein, we report on the simultaneous enhancement of the power and energy densities of a SC using an ionic mixture electrolyte with different types of ionic interactions. Two types of cations with stronger ionic interactions can be packed in a denser arrangement in mesopores to increase the capacitance, whereas only cations with weaker ionic interactions are allowed to enter micropores without sacrificing the power density. This unique selective charging behavior in different confined porous structure was investigated by solid-state nuclear magnetic resonance experiments and further confirmed theoretically by both density functional theory and molecular dynamics simulations. Our results offer a distinct insight into pairing ionic mixture electrolytes with materials with confined porous characteristics and further propose that it is possible to control the charging process resulting in comprehensive enhancements in SC performance.

10.
J Am Chem Soc ; 139(42): 14961-14975, 2017 10 25.
Article in English | MEDLINE | ID: mdl-28945372

ABSTRACT

Cu-exchanged zeolites possess active sites that are able to cleave the C-H bond of methane at temperatures ≤200 °C, enabling its selective partial oxidation to methanol. Herein we explore this process over Cu-SSZ-13 materials. We combine activity tests and X-ray absorption spectroscopy (XAS) to thoroughly investigate the influence of reaction parameters and material elemental composition on the productivity and Cu speciation during the key process steps. We find that the CuII moieties responsible for the conversion are formed in the presence of O2 and that high temperature together with prolonged activation time increases the population of such active sites. We evidence a linear correlation between the reducibility of the materials and their methanol productivity. By optimizing the process conditions and material composition, we are able to reach a methanol productivity as high as 0.2 mol CH3OH/mol Cu (125 µmol/g), the highest value reported to date for Cu-SSZ-13. Our results clearly demonstrate that high populations of 2Al Z2CuII sites in 6r, favored at low values of both Si:Al and Cu:Al ratios, inhibit the material performance by being inactive for the conversion. Z[CuIIOH] complexes, although shown to be inactive, are identified as the precursors to the methane-converting active sites. By critical examination of the reported catalytic and spectroscopic evidence, we propose different possible routes for active-site formation.

11.
Nature ; 544(7651): 456-459, 2017 04 27.
Article in English | MEDLINE | ID: mdl-28371799

ABSTRACT

Understanding and predicting crystal growth is fundamental to the control of functionality in modern materials. Despite investigations for more than one hundred years, it is only recently that the molecular intricacies of these processes have been revealed by scanning probe microscopy. To organize and understand this large amount of new information, new rules for crystal growth need to be developed and tested. However, because of the complexity and variety of different crystal systems, attempts to understand crystal growth in detail have so far relied on developing models that are usually applicable to only one system. Such models cannot be used to achieve the wide scope of understanding that is required to create a unified model across crystal types and crystal structures. Here we describe a general approach to understanding and, in theory, predicting the growth of a wide range of crystal types, including the incorporation of defect structures, by simultaneous molecular-scale simulation of crystal habit and surface topology using a unified kinetic three-dimensional partition model. This entails dividing the structure into 'natural tiles' or Voronoi polyhedra that are metastable and, consequently, temporally persistent. As such, these units are then suitable for re-construction of the crystal via a Monte Carlo algorithm. We demonstrate our approach by predicting the crystal growth of a diverse set of crystal types, including zeolites, metal-organic frameworks, calcite, urea and l-cystine.


Subject(s)
Crystallization , Models, Chemical , Algorithms , Calcium Carbonate/chemistry , Cystine/chemistry , Kinetics , Monte Carlo Method , Urea/chemistry , Zeolites/chemistry
12.
J Phys Chem B ; 119(21): 6433-47, 2015 May 28.
Article in English | MEDLINE | ID: mdl-25942518

ABSTRACT

Octa(aminopropylsilsesquioxane) Si8O12[(CH2)3NH2]8 is a very important precursor for many other hybrid organic/inorganic polyhedral oligomeric silsesquioxanes (POSS) because of the reactivity of its primary amine groups. Unfortunately, it is unstable in water, which can lead to the cleavage of its siloxane cage. In the present work, such a degradation was confirmed using solid-state (29)Si NMR spectroscopy, and the molecular features at the basis of this instability were studied using molecular dynamics simulations (MD). It was also investigated whether replacing the primary amine end groups by secondary amines or by amides with long aliphatic chains could lead to an improvement in the water stability of the Si/O framework. In the pure bulk models, all POSS interdigitate with their pendant organic arms intertwined. Upon insertion of isolated molecules into water, the dimensions of the primary amine POSS remain close to those of the bulk, while the secondary amine and the amide POSS favor conformations that optimize the intramolecular chain-chain interactions. When there are several POSS molecules in water, they cluster with each other through both intra- and intermolecular chain-chain interactions. This tendency for the organic chains to intertwine whenever possible provides some protection to the siloxane cages from water, but also leaves some of the siloxane O exposed. As such, the latter are accessible to form transient hydrogen bonds with the water molecules, which could be a precursor step to hydrolysis and thus cage breakage. In the molecular models, a better protection was obtained in the amide POSS for two reasons: its chains tended to wrap efficiently around its cage, and its ketone O kept water from getting close to the siloxanes. The molecular modeling characterizations were found to agree very well with experimental evidence.

13.
J Phys Chem B ; 118(34): 10167-74, 2014 Aug 28.
Article in English | MEDLINE | ID: mdl-25093443

ABSTRACT

Factors influencing the reactivity of selected amine absorbents for carbon dioxide (CO2) capture, in terms of the tendency to form amine carbamate, have been studied. Four linear primary alkanolamines at varying chain lengths (MEA, 3A1P, 4A1B , and 5A1P ), two primary amines with different substituents in the ß-position to the nitrogen (1A2P and ISOB), a secondary alkanolamine (DEA), and a sterically hindered primary amine (AMP) were investigated. The relationship between the (15)N NMR data of aqueous amines and their ability to form carbamate, as determined at equilibrium by quantitative (13)C NMR experiments, was analyzed, taking into account structural-chemical properties. For all the amines, the (15)N chemical shifts fairly reflected the observed reactivity for carbamate formation. In addition to being a useful tool for the investigation of amine reactivity, (15)N NMR data clearly provided evidence of the importance of solvent effects for the understanding of chemical dynamics in CO2 capture by aqueous amine absorbents.

14.
Chemphyschem ; 15(2): 283-92, 2014 Feb 03.
Article in English | MEDLINE | ID: mdl-24402742

ABSTRACT

A variety of phosphated zeolite H-ZSM-5 samples are investigated by using a combination of Fourier transfer infrared (FTIR) spectroscopy, single pulse (27)Al, (29)Si, (31)P, (1)H-(31)P cross polarization (CP), (27)Al-(31)P CP, and (27)Al 3Q magic angle spinning nuclear magnetic resonance (MAS NMR) spectroscopy, scanning transmission X-ray microscopy (STXM) and N2 physisorption. This approach leads to insights into the physicochemical processes that take place during phosphatation. Direct phosphatation of H-ZSM-5 promotes zeolite aggregation, as phosphorus does not penetrate deep into the zeolite material and is mostly found on and close to the outer surface of the zeolite, acting as a glue. Phosphatation of pre-steamed H-ZSM-5 gives rise to the formation of a crystalline tridymite AlPO4 phase, which is found in the mesopores of dealuminated H-ZSM-5. Framework aluminum species interacting with phosphorus are not affected by hydrothermal treatment. Dealuminated H-ZSM-5, containing AlPO4 , retains relatively more framework Al atoms and acid sites during hydrothermal treatment than directly phosphated H-ZSM-5.

15.
Phys Chem Chem Phys ; 15(27): 11226-30, 2013 Jul 21.
Article in English | MEDLINE | ID: mdl-23752140

ABSTRACT

Mechanochemical reactions between KBH4 and KBF4 result in the formation of potassium fluoroborohydrides K(BH(x)F(4-x)) (x = 0-4), as determined by (11)B and (19)F solid state NMR. The materials maintain the cubic KBH4 structure. Thermogravimetric (TG) data for a ball-milled sample with KBH4 : KBF4 = 3 : 1 are consistent with only desorption of hydrogen.


Subject(s)
Borohydrides/chemistry , Magnetic Resonance Spectroscopy , Molecular Structure , Thermogravimetry
17.
J Phys Chem A ; 114(27): 7391-7, 2010 Jul 15.
Article in English | MEDLINE | ID: mdl-20557090

ABSTRACT

The methylation of ethene by methyl chloride and methanol in the microporous materials SAPO-34 and SSZ-13 has been studied using different periodic atomistic modeling approaches based on density functional theory. The RPBE functional, which earlier has been used successfully in studies of surface reactions on metals, fails to yield a qualitatively correct description of the transition states under study. Employing B3LYP as functional gives results in line with experimental data: (1) Methanol is adsorbed more strongly than methyl chloride to the acid site. (2) The activation energies for the methylation of ethene are slightly lower for SSZ-13. Furthermore, the B3LYP activation energies are lower for methyl chloride than for methanol.


Subject(s)
Methanol/chemistry , Methyl Chloride/chemistry , Models, Chemical , Molecular Dynamics Simulation , Oxides/chemistry , Thermodynamics , Adsorption , Methylation , Porosity , Surface Properties
18.
J Phys Chem A ; 113(5): 917-23, 2009 Feb 05.
Article in English | MEDLINE | ID: mdl-19099448

ABSTRACT

Structures and energies of protonated ethylbenzene and 2,6-dimethylethylbenzene have been studied by quantum chemical calculations. The main goal is to study the mechanism for splitting off ethene from protonated ethylbenzene. Data are reported for the four ethylbenzenium isomers arising depending on the position of the proton on the benzene ring: a pi complex where ethene is weakly bonded to a benzenium ion and two transition states connected with the cleavage of the ethylbenzenium ion. The larger part of the data that are reported has been obtained at the B3LYP/cc-pVTZ level of theory. Energies obtained by the Gaussian-3 G3B3 composite method are also given. Computations have also been carried out at the MP2/6-311++G(d,p) level of theory. The calculated results can be reconciled with published experimental observations, and they give information about the reaction system that is not obtained by experimental techniques.

19.
J Phys Chem A ; 111(7): 1222-8, 2007 Feb 22.
Article in English | MEDLINE | ID: mdl-17266286

ABSTRACT

DFT and high-level ab initio calculations (among them B3LYP and G3MP2B3) have been used to describe molecular reactions relevant for CO2 absorption in aqueous (alkanol)amine solutions. Reaction mechanisms for various reactions of CO2 with ammonia, monoethanolamine (MEA), and diethanolamine (DEA) to carbamic acid and ion pair products have been investigated and interpreted in light of experimental observations. Additional water, ammonia, MEA, and DEA molecules have also been added to the molecular complexes to simulate microsolvation effects. These extra molecules may act as catalysts for the desired reactions, and in several cases they have a large impact on activation and reaction energies. Solvent effects were estimated by applying electrostatic continuum models for selected systems. Our calculated transition state energies agree well with experimental activation energies.

SELECTION OF CITATIONS
SEARCH DETAIL
...