Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Int J Pharm ; 573: 118834, 2020 Jan 05.
Article in English | MEDLINE | ID: mdl-31715342

ABSTRACT

Aluminum hydroxide (AH) salts are widely used as vaccine adjuvants and controlling antigen-AH interactions is a key challenge in vaccine formulation. In a previous work, we have developed a quartz crystal microbalance (QCM) platform, based on stable AH-coated sensors, to explore the mechanisms of model antigen adsorption. The QCM study of bovine serum albumin (BSA) adsorption at different pH and ionic strength (I) values showed that protein adsorption on AH adjuvant at physiological pH cannot be explained mainly by electrostatic interactions, in contrast with previous reports. Here, we exploit further the developed QCM platform to investigate the role of phosphate-hydroxyl ligand exchanges in the adsorption mechanism of BSA, human serum albumin (HSA) and ovalbumin (OVA) on two commercial AH adjuvants. BSA adsorption decreased on immobilized AH particles previously treated with KH2PO4, highlighting the role of exchangeable sites on AH particles in the adsorption process. BSA and OVA were dephosphorylated by treatment with an acid phosphatase to decrease their phosphate content by about 80% and 25%, respectively. Compared to native BSA, adsorption of dephosphorylated BSA decreased significantly on one AH adjuvant at pH 7. Adsorption of dephosphorylated OVA was comparable to the one of native OVA. Further QCM assays showed that phospho-amino acids (PO4-serine and PO4-threonine) displaced previously adsorbed BSA and OVA from AH particles in conditions that were depending on the protein and the AH. Taken together, these observations suggest that phosphate-hydroxyl ligand exchange is an important adsorption mechanism of proteins on AH. These results moreover confirm that the developed AH-coated QCM sensors offer a new platform for the study of antigen adsorption, to the benefit of vaccine formulation.


Subject(s)
Adjuvants, Immunologic/chemistry , Aluminum Hydroxide/chemistry , Drug Compounding/methods , Vaccines/chemistry , Adsorption , Chemistry, Pharmaceutical , Ligands , Osmolar Concentration , Ovalbumin/chemistry , Quartz Crystal Microbalance Techniques , Serum Albumin, Bovine/chemistry , Serum Albumin, Human/chemistry
2.
Materials (Basel) ; 12(23)2019 Nov 28.
Article in English | MEDLINE | ID: mdl-31795201

ABSTRACT

The influence of the manufacturing process on physicochemical properties and biological performance of xenogenic biomaterials has been extensively studied, but its quantification on bone-to-material contact remains poorly investigated. The aim of this study was to investigate the effect of different heat treatments of an experimental chemically-deproteinized bovine hydroxyapatite in vivo in terms of new bone formation and osteoconductivity. Protein-free hydroxyapatite from bovine origin was produced under sub-critical conditions and then either sintered at 820 °C or 1200 °C. Structural and morphological properties were assessed by scanning electron microscopy (SEM), measurement of surface area and X-ray diffractometry (XRD). The materials were then implanted in standardized alveolar bone defects in minipigs and histomorphometric evaluations were performed using non-decalcified sections. Marked topographical differences were observed by SEM analysis. As the sintering temperature of the experimental material increased, the surface area significantly decreased while crystallite size increased. In vivo samples showed that the highly sintered BHA presented a significantly lower percentage of newly formed bone than the unheated one (p = 0.009). In addition, the percentage of bone-to-material contact (BMC) was significantly lowered in the highly sintered group when compared to the unsintered (p = 0.01) and 820 °C sintered (p = 0.02) groups. Non-sintered or sintered at 820 °C BHA seems to maintain a certain surface roughness allowing better bone regeneration and BMC. On the contrary, sintering of BHA at 1200 °C has an effect on its morphological and structural characteristics and significantly modify its biological performance (osteoconductivity) and crystallinity.

3.
Anal Chem ; 90(2): 1168-1176, 2018 01 16.
Article in English | MEDLINE | ID: mdl-29224339

ABSTRACT

Aluminum hydroxide (AH) salts are the most widely used adjuvants in vaccine formulation. They trigger immunogenicity from antigenic subunits that would otherwise suffer from a lack of efficiency. Previous studies focusing on antigen-AH interaction mechanisms, performed with model proteins, suggested that electrostatic interactions and phosphate-hydroxyl ligand exchanges drive protein adsorption on AH. We however recently evidenced that NaCl, used in vaccine formulation, provokes AH particle aggregation. This must be taken into account to interpret data related to protein adsorption on AH. Here, we report on the successful development and use of a stable AH-coated surface to explore the mechanisms of protein adsorption by means of ultrasensitive surface analysis tools. Bovine serum albumin (BSA) adsorption was studied at different pHs and ionic strengths (I) using quartz crystal microbalance. The results show that protein adsorption on the AH adjuvant cannot be explained solely by electrostatic interactions and ligand exchanges. Hence, a higher adsorption was observed at pH 3 compared to pH 7, although AH and BSA respectively undergo repulsive and attractive electrostatic interactions at these pH values. Almost no effect of I on adsorption was moreover noted at pH 7. These new developments and observations not only suggest that other mechanisms govern protein adsorption on AH but also offer a new platform for the study of antigen adsorption in the context of vaccine formulation. Immobilizing particles on QCM sensors also enriches the range of applications for which QCM can be exploited, especially in colloid science.


Subject(s)
Adjuvants, Immunologic/chemistry , Aluminum Hydroxide/chemistry , Antigens/chemistry , Quartz Crystal Microbalance Techniques/methods , Serum Albumin, Bovine/chemistry , Vaccines/chemistry , Adsorption , Animals , Cattle , Osmolar Concentration , Static Electricity
4.
Int J Pharm ; 517(1-2): 226-233, 2017 Jan 30.
Article in English | MEDLINE | ID: mdl-27956190

ABSTRACT

The immunostimulation capacity of most vaccines is enhanced through antigen adsorption on aluminum hydroxide (AH) adjuvants. Varying the adsorption conditions, i.e. pH and ionic strength (I), changes the antigen adsorbed amount and therefore the ability of the vaccine to stimulate the immune system. Vaccine formulations are thus resulting from an empirical screening of the adsorption conditions. This work aims at studying the physicochemical effects of adjusting the ionic strength of commercial AH adjuvant particles suspensions with sodium chloride (NaCl). X-ray photoelectron spectroscopy data show that AH particles surface chemical composition is neither altered by I adjustment with NaCl nor by deposition on gold surfaces. The latter result provides the opportunity to use AH-coated gold surfaces as a platform for advanced surface analysis of adjuvant particles, e.g. by atomic force microscopy (AFM). The morphology of adjuvant particles recovered from native and NaCl-treated AH suspensions, as studied by scanning electron microscopy and AFM, reveals that AH particles aggregation state is significantly altered by NaCl addition. This is further confirmed by nitrogen adsorption experiments: I adjustment to 150mM with NaCl strongly promotes AH particles aggregation leading to a strong decrease of the developed specific surface area. This work thus evidences the effect of NaCl on AH adjuvant structure, which may lead to alteration of formulated vaccines and to misinterpretation of data related to antigen adsorption on adjuvant particles.


Subject(s)
Adjuvants, Immunologic/chemistry , Aluminum Hydroxide/chemistry , Sodium Chloride/chemistry , Surface Properties , Suspensions/chemistry , Adsorption , Freeze Drying , Gold/chemistry , Microscopy, Atomic Force , Microscopy, Electrochemical, Scanning , Nitrogen/chemistry , Osmolar Concentration , Photoelectron Spectroscopy , Powders/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...