Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
Add more filters










Publication year range
1.
Nanoscale ; 7(17): 8084-92, 2015 May 07.
Article in English | MEDLINE | ID: mdl-25873332

ABSTRACT

We developed colloidal synthesis to investigate the structural and electronic properties of CdSe-CdTe and inverted CdTe-CdSe heteronanoplatelets and experimentally demonstrate that the overgrowth of cadmium selenide or cadmium telluride core nanoplatelets with counterpartner chalcogenide wings leads to type-II heteronanoplatelets with emission energies defined by the bandgaps of the CdSe and CdTe platelets and the characteristic band offsets. The observed conduction and valence band offsets of 0.36 eV and 0.56 eV are in line with theoretical predictions. The presented type-II heteronanoplatelets exhibit efficient spatially indirect radiative exciton recombination with a quantum yield as high as 23%. While the exciton lifetime is strongly prolonged in the investigated type-II 2D systems with respect to 2D type-I systems, the occurring 2D giant oscillator strength (GOST) effect still leads to a fast and efficient exciton recombination. This makes type-II heteronanoplatelets interesting candidates for low threshold lasing applications and photovoltaics.

2.
Nanotechnology ; 24(43): 435202, 2013 Nov 01.
Article in English | MEDLINE | ID: mdl-24107306

ABSTRACT

The incorporation of colloidal nanocrystals in a high crystalline quality semiconductor matrix, the efficient carrier injection into the embedded nanocrystals and the fast optical response are key features for the fabrication of novel optoelectronic nanodevices based on colloidal nanostructures as active optical material. Using a novel growth approach, colloidal bare CdSe and core-shell CdSe/ZnS nanocrystals were monolithically incorporated in pseudomorphic ZnSe/ZnMgSe quantum wells in order to control and enhance the carrier transfer into the nanocrystals. The photoluminescence for bare CdSe nanocrystals incorporated in ZnSe/ZnMgSe quantum well structures is substantially enhanced in comparison to nanocrystals sandwiched in ZnSe epilayers, which we attribute to increased carrier injection into the embedded nanocrystals via the quantum well, resembling the function of a wetting layer in Stranski-Krastanov-grown quantum dots. Core-shell CdSe/ZnS nanocrystals embedded in quantum well structures do not show considerable PL modifications because the ZnS shell prevents the efficient carrier migration between the nanocrystal and the matrix. Systematic investigations of structural and optical properties by high-resolution x-ray diffraction, temperature-dependent photoluminescence and time-resolved emission are presented.

3.
Nanotechnology ; 24(33): 335701, 2013 Aug 23.
Article in English | MEDLINE | ID: mdl-23881297

ABSTRACT

The photoluminescence response of semiconductor CdSe/ZnS quantum dots embedded in a borosilicate porous glass matrix to exposure to ammonia vapor is investigated. The formation of surface complexes on the quantum dots results in quenching of the photoluminescence and a shortening of the luminescence decay time. The process is reversible, desorption of ammonia molecules from the quantum dot surface causes the photoluminescence to recover. The sensitivity of the quantum dot luminescence intensity and decay time to the interaction time and the reversibility of the photoluminescence changes make the CdSe/ZnS quantum dots in porous glass system a candidate for use as an optical sensor of ammonia.

4.
Nanotechnology ; 23(32): 325201, 2012 Aug 17.
Article in English | MEDLINE | ID: mdl-22824958

ABSTRACT

A novel homogeneous composite material, consisting of luminescent CdSe/ZnS quantum nanorods, embedded in the nematic liquid crystal 5CB, has been prepared. Liquid crystal cells and free-standing stretched polymer films incorporating this composite material were characterized using polarized micro-photoluminescence and electro-optical measurements under an applied electric field. A liquid crystal induced, macroscopic orientation of the nanorods in a thin layer of the material has been demonstrated. A conventional liquid crystal cell, filled with this composite, exhibits 40% modulation of the nanorod's photoluminescence intensity when subjected to an external electric field. These results indicate that quantum nanorods may have practical applications in photonic devices.

5.
Nanotechnology ; 22(45): 455201, 2011 Nov 11.
Article in English | MEDLINE | ID: mdl-21993251

ABSTRACT

We studied the optical properties of poly(ethylene terephthalate) ion track membranes of 1.5, 0.5 and 0.05 µm pores impregnated with luminescent semiconductor CdSe/ZnS nanocrystals of different diameters (2.5 and 5 nm). The nanocrystals were embedded from their colloidal solutions in toluene by the immersion of a membrane in a colloidal solution. Localization of quasi-isolated weakly interacting CdSe/ZnS nanocrystals in a loosened layer on the track pore wall surface along with the existence of empty pores was demonstrated. We observed also the spatial separation of nanocrystals of 2.5 and 5 nm in size along the 50 nm pores.

6.
Phys Rev Lett ; 99(13): 136802, 2007 Sep 28.
Article in English | MEDLINE | ID: mdl-17930619

ABSTRACT

A silver-nanowire cavity is functionalized with CdSe nanocrystals and optimized towards cavity quantum electrodynamics by varying the nanocrystal-nanowire distance d and cavity length L. From the modulation of the nanocrystal emission by the cavity modes a plasmon group velocity of v (gr) approximately 0.5c is derived. Efficient exciton-plasmon-photon conversion and guiding is demonstrated along with a modification in the spontaneous emission rate of the coupled exciton-plasmon system.

7.
Nano Lett ; 6(3): 557-61, 2006 Mar.
Article in English | MEDLINE | ID: mdl-16522062

ABSTRACT

We report on a strongly coupled cavity quantum electrodynamic (CQED) system consisting of a CdSe nanocrystal coupled to a single photon mode of a polymer microsphere. The strong exciton-photon coupling is manifested by the observation of a cavity mode splitting variant Planck's over 2piOmega(exp) between 30 und 45 microeV and photon lifetime measurements of the coupled exciton-photon state. The single photon mode is isolated by lifting the mode degeneracy in a slightly deformed microsphere cavity and addressing it by high-resolution imaging spectroscopy. This cavity mode is coupled to a localized exciton of an anisotropically shaped CdSe nanocrystal that emits highly polarized light in resonance to the cavity mode and that was placed in the maximum electromagnetic field close to the microsphere surface. The exciton confined in the CdSe nanorod exhibits an optical transition dipole moment much larger than that of atoms, the standard system for CQED experiments, and a low-temperature homogeneous line width much narrower than the high-Q cavity mode width. The observation of strong coupling in a colloidal semiconductor nanocrystal-cavity system opens the way to study fundamental quantum-optics phenomena and to implement quantum information processing concepts that work in the visible spectral range and are based on solid-state nanomaterials.

8.
J Phys Chem B ; 110(5): 2074-9, 2006 Feb 09.
Article in English | MEDLINE | ID: mdl-16471785

ABSTRACT

The recombination dynamics of zinc-blende-type, deep-red emitting CdTe/CdS core-shell nanocrystals is studied over a wide temperature range. Two characteristic decay regimes are found: a temperature-dependent decay component of a few nanoseconds and a long-living temperature-independent component of approximately 315 ns. The average decay time of the exciton states changes from 20 to 5ns when the temperature is increased from 15 to 295 K. At low temperatures, the observed decay behavior is assigned to thermally induced population and decay of the allowed exchange-split exciton states. At temperatures above T>100 K, nonradiative decay channels involving phonons start to contribute to the exciton recombination. The observed broad distribution in decay times, monitored by stretched exponential fitting functions, we explain by variations in the electron-hole overlap caused by a partly incomplete CdTe/CdS core-shell structure and the nearly energy-degenerated bright and dark state superposition.

9.
Nano Lett ; 5(3): 483-90, 2005 Mar.
Article in English | MEDLINE | ID: mdl-15755099

ABSTRACT

We present a growth technique which combines wet-chemical growth and molecular beam epitaxy (MBE) to create complex semiconductor nanostructures with nanocrystals as active optical material. The obtained results show that wet-chemically prepared semiconductor nanocrystals can be incorporated in an epitaxally grown crystalline cap layer. As an exemplary system we chose CdSe nanorods and CdSe(ZnS) core-shell nanocrystals in ZnSe and discuss the two limits of thin (d approximately 2R) and thick (d>2R) ZnSe cap layers of thickness d for CdSe nanorods and nanodots of radii R between 2 and 4 nm. In contrast to the strain-induced CdSe/ZnSe Stranski-Krastanow growth of a quantum dot layer in a semiconductor heterostructure, the technique proposed here does not rely on strain and thus results in additional degrees of freedom for choosing composition, concentration, shape, and size of the nanocrystals. Transmission electron microscopy and X-ray diffractometry show that the ZnSe cap layer is of high crystalline quality and provides all parameters for a consecutive growth of Bragg structures, waveguides, or diode structures for electrical injection.


Subject(s)
Cadmium Compounds/chemistry , Crystallization/methods , Nanostructures/chemistry , Nanostructures/ultrastructure , Selenium Compounds/chemistry , Semiconductors , Zinc Compounds/chemistry , Cadmium Compounds/analysis , Colloids/chemistry , Equipment Design , Equipment Failure Analysis , Materials Testing , Molecular Conformation , Nanostructures/analysis , Particle Size , Selenium Compounds/analysis , Systems Integration , Zinc Compounds/analysis
10.
Phys Rev Lett ; 94(1): 016803, 2005 Jan 14.
Article in English | MEDLINE | ID: mdl-15698113

ABSTRACT

We study the optical properties of excitons in one-dimensional (1D) nanostructures at low temperatures. In single CdSe/ZnS core-shell nanorods we observe a fine structure splitting and explain it by exchange interaction. Two peaks are observed with different degrees of linear polarization of DLP<0.85 and DLP>0.95. For small nanorod radii R< or =a(B)/2, an increase in the photoluminescence decay time is found when the temperature increases from 10 to 80 K. The observations are explained by a radius-dependent change in the symmetry of the 1D-exciton ground state which transforms from a dark state into bright states below a critical radius of R(crit) approximately 3.7 nm.

SELECTION OF CITATIONS
SEARCH DETAIL
...