Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 54
Filter
Add more filters










Publication year range
1.
Annu Rev Pharmacol Toxicol ; 63: 295-320, 2023 01 20.
Article in English | MEDLINE | ID: mdl-36662583

ABSTRACT

The actions of estrogens and related estrogenic molecules are complex and multifaceted in both sexes. A wide array of natural, synthetic, and therapeutic molecules target pathways that produce and respond to estrogens. Multiple receptors promulgate these responses, including the classical estrogen receptors of the nuclear hormone receptor family (estrogen receptors α and ß), which function largely as ligand-activated transcription factors, and the 7-transmembrane G protein-coupled estrogen receptor, GPER, which activates a diverse array of signaling pathways. The pharmacology and functional roles of GPER in physiology and disease reveal important roles in responses to both natural and synthetic estrogenic compounds in numerous physiological systems. These functions have implications in the treatment of myriad disease states, including cancer, cardiovascular diseases, and metabolic disorders. This review focuses on the complex pharmacology of GPER and summarizes major physiological functions of GPER and the therapeutic implications and ongoing applications of GPER-targeted compounds.


Subject(s)
Estrogens , Receptors, Estrogen , Male , Female , Humans , Receptors, Estrogen/metabolism , Estrogens/pharmacology , Estrogens/metabolism , Receptors, G-Protein-Coupled/metabolism , Signal Transduction , GTP-Binding Proteins/metabolism
2.
Virology ; 552: 94-106, 2021 01 02.
Article in English | MEDLINE | ID: mdl-33120225

ABSTRACT

Drugs against flaviviruses such as dengue (DENV) and Zika (ZIKV) virus are urgently needed. We previously demonstrated that three fluoroquinolones, ciprofloxacin, enoxacin, and difloxacin, suppress replication of six flaviviruses. To investigate the barrier to resistance and mechanism(s) of action of these drugs, DENV-4 was passaged in triplicate in HEK-293 cells in the presence or absence of each drug. Resistance to ciprofloxacin was detected by the seventh passage and to difloxacin by the tenth, whereas resistance to enoxacin did not occur within ten passages. Two putative resistance-conferring mutations were detected in the envelope gene of ciprofloxacin and difloxacin-resistant DENV-4. In the absence of ciprofloxacin, ciprofloxacin-resistant viruses sustained a significantly higher viral titer than control viruses in HEK-293 and HuH-7 cells and resistant viruses were more stable than control viruses at 37 °C. These results suggest that the mechanism of action of ciprofloxacin and difloxacin involves interference with virus binding or entry.


Subject(s)
Biological Evolution , Dengue Virus/drug effects , Dengue Virus/physiology , Dengue/virology , Fluoroquinolones/pharmacology , Genetic Fitness/drug effects , Virus Physiological Phenomena/drug effects , Adaptation, Biological , Animals , Antiviral Agents/pharmacology , Cell Line , Chlorocebus aethiops , Ciprofloxacin/analogs & derivatives , Ciprofloxacin/pharmacology , Drug Resistance, Viral , Enoxacin/pharmacology , HEK293 Cells , Host Microbial Interactions , Humans , Mutation , Vero Cells , Viral Envelope/physiology
3.
Viruses ; 12(9)2020 09 13.
Article in English | MEDLINE | ID: mdl-32933138

ABSTRACT

Repurposing FDA-approved compounds could provide the fastest route to alleviate the burden of disease caused by flaviviruses. In this study, three fluoroquinolones, enoxacin, difloxacin and ciprofloxacin, curtailed replication of flaviviruses Zika (ZIKV), dengue (DENV), Langat (LGTV) and Modoc (MODV) in HEK-293 cells at low micromolar concentrations. Time-of-addition assays suggested that enoxacin suppressed ZIKV replication at an intermediate step in the virus life cycle, whereas ciprofloxacin and difloxacin had a wider window of efficacy. A129 mice infected with 1 × 105 plaque-forming units (pfu) ZIKV FSS13025 (n = 20) or phosphate buffered saline (PBS) (n = 11) on day 0 and treated with enoxacin at 10 mg/kg or 15 mg/kg or diluent orally twice daily on days 1-5 did not differ in weight change or virus titer in serum or brain. However, mice treated with enoxacin showed a significant, five-fold decrease in ZIKV titer in testes relative to controls. Mice infected with 1 × 102 pfu ZIKV (n = 13) or PBS (n = 13) on day 0 and treated with 15 mg/kg oral enoxacin or diluent twice daily pre-treatment and days 1-5 post-treatment also did not differ in weight and viral load in the serum, brain, and liver, but mice treated with enoxacin showed a significant, 2.5-fold decrease in ZIKV titer in testes relative to controls. ZIKV can be sexually transmitted, so reduction of titer in the testes by enoxacin should be further investigated.


Subject(s)
Antiviral Agents/pharmacology , Flavivirus/drug effects , Fluoroquinolones/pharmacology , Virus Replication/drug effects , Animals , Ciprofloxacin/analogs & derivatives , Ciprofloxacin/pharmacology , Dengue , Dengue Virus/drug effects , Enoxacin/pharmacology , Female , HEK293 Cells , Humans , Male , Mice , Testis/virology , Viral Load , Zika Virus/drug effects
4.
Sci Transl Med ; 12(528)2020 01 29.
Article in English | MEDLINE | ID: mdl-31996464

ABSTRACT

Human obesity has become a global health epidemic, with few safe and effective pharmacological therapies currently available. The systemic loss of ovarian estradiol (E2) in women after menopause greatly increases the risk of obesity and metabolic dysfunction, revealing the critical role of E2 in this setting. The salutary effects of E2 are traditionally attributed to the classical estrogen receptors ERα and ERß, with the contribution of the G protein-coupled estrogen receptor (GPER) still largely unknown. Here, we used ovariectomy- and diet-induced obesity (DIO) mouse models to evaluate the preclinical activity of GPER-selective small-molecule agonist G-1 (also called Tespria) against obesity and metabolic dysfunction. G-1 treatment of ovariectomized female mice (a model of postmenopausal obesity) reduced body weight and improved glucose homeostasis without changes in food intake, fuel source usage, or locomotor activity. G-1-treated female mice also exhibited increased energy expenditure, lower body fat content, and reduced fasting cholesterol, glucose, insulin, and inflammatory markers but did not display feminizing effects on the uterus (imbibition) or beneficial effects on bone health. G-1 treatment of DIO male mice did not elicit weight loss but prevented further weight gain and improved glucose tolerance, indicating that G-1 improved glucose homeostasis independently of its antiobesity effects. However, in ovariectomized DIO female mice, G-1 continued to elicit weight loss, reflecting possible sex differences in the mechanisms of G-1 action. In conclusion, this work demonstrates that GPER-selective agonism is a viable therapeutic approach against obesity, diabetes, and associated metabolic abnormalities in multiple preclinical male and female models.


Subject(s)
Diabetes Mellitus/drug therapy , Obesity/drug therapy , Receptors, G-Protein-Coupled/agonists , Adipose Tissue/pathology , Adiposity/drug effects , Animals , Cell Respiration , Disease Models, Animal , Energy Metabolism , Estrogens/deficiency , Female , Genes, Mitochondrial , Glucose/metabolism , Homeostasis , Inflammation/pathology , Male , Mice , Mice, Inbred C57BL , Mitochondria/genetics , Obesity/complications , Ovariectomy , Receptors, Estrogen/metabolism , Receptors, G-Protein-Coupled/metabolism , Treatment Outcome , Up-Regulation , Weight Gain
5.
Cell Chem Biol ; 26(12): 1692-1702.e5, 2019 12 19.
Article in English | MEDLINE | ID: mdl-31706983

ABSTRACT

Estrogen exerts extensive and diverse effects throughout the body of women. In addition to the classical nuclear estrogen receptors (ERα and ERß), the G protein-coupled estrogen receptor GPER is an important mediator of estrogen action. Existing ER-targeted therapeutic agents act as GPER agonists. Here, we report the identification of a small molecule, named AB-1, with the previously unidentified activity of high selectivity for binding classical ERs over GPER. AB-1 also possesses a unique functional activity profile as an agonist of transcriptional activity but an antagonist of rapid signaling through ERα. Our results define a class of small molecules that discriminate between the classical ERs and GPER, as well as between modes of signaling within the classical ERs. Such an activity profile, if developed into an ER antagonist, could represent an opportunity for the development of first-in-class nuclear hormone receptor-targeted therapeutics for breast cancer exhibiting reduced acquired and de novo resistance.


Subject(s)
Estrogen Receptor alpha/metabolism , Estrogen Receptor beta/metabolism , Ligands , Signal Transduction , Animals , Cell Proliferation/drug effects , Estradiol/pharmacology , Estrogen Receptor alpha/antagonists & inhibitors , Estrogen Receptor beta/antagonists & inhibitors , Female , Forkhead Box Protein O3/genetics , Forkhead Box Protein O3/metabolism , Humans , MCF-7 Cells , Mice , Mice, Inbred C57BL , Protein Binding , Receptors, Estrogen/genetics , Receptors, Estrogen/metabolism , Receptors, G-Protein-Coupled/agonists , Receptors, G-Protein-Coupled/genetics , Receptors, G-Protein-Coupled/metabolism , Signal Transduction/drug effects , Transcription, Genetic/drug effects , Uterus/drug effects , Uterus/metabolism
6.
Neuropharmacology ; 158: 107701, 2019 11 01.
Article in English | MEDLINE | ID: mdl-31291595

ABSTRACT

Multiple system atrophy (MSA) is a fatal demyelinating disorder lacking any disease-modifying therapies. MSA pathology stems from aggregated α-synuclein (aSyn) accumulation in glial cytosolic inclusions of oligodendroglial cell (OLGs), the myelinating cells of brain. In MSA brains and in MSA animal models with aSyn accumulation in OLGs, aberrant expression of brain-derived neurotrophic factor (BDNF) and glial-cell-line-derived neurotrophic factor (GDNF) occur. Nerve growth factor (NGF) expression can also be altered in neurodegenerative diseases. It is unclear if oxidative stress impacts the viability of aSyn-accumulating OLG cells. Here, we show that OLN-93 cells stably expressing human wild type aSyn or the MSA-associated-aSyn-mutants G51D or A53E, are more vulnerable to oxidative stress. In dose response studies we found that OLN-93 cells treated 48 h with 160 nM FTY720 or our new non-immunosuppressive FTY720-C2 or FTY720-Mitoxy derivatives sustained normal viability. Also, FTY720, FTY720-C2, and FTY720-Mitoxy all stimulated NGF expression at 24 h. However only FTY720-Mitoxy also increased BDNF and GDNF mRNA at 24 h, an effect paralleled by increases in histone 3 acetylation and ERK1/2 phosphorylation. Myelin associated glycoprotein (MAG) levels were also increased in OLN-93 cells after 48 h treatment with FTY720-Mitoxy. FTY720, FTY720-C2, and FTY720-Mitoxy all prevented oxidative-stress-associated-cell-death of OLN-93 cells that lack any aSyn expression. However, only FTY720-Mitoxy protected MSA-like aSyn-expressing-OLN-93-cells against oxidative-cell-death. These data identify potent protective effects for FTY720-Mitoxy with regard to trophic factors as well as MAG expression by OLG cells. Testing of FTY720-Mitoxy in mice is thus a judicious next step for neuropharmacological preclinical development.


Subject(s)
Ceramides/pharmacology , Fingolimod Hydrochloride/analogs & derivatives , Multiple System Atrophy/metabolism , Oligodendroglia/drug effects , Oxidative Stress/drug effects , Sphingosine 1 Phosphate Receptor Modulators/pharmacology , alpha-Synuclein/drug effects , Animals , Brain-Derived Neurotrophic Factor/drug effects , Brain-Derived Neurotrophic Factor/metabolism , Cell Line , Fingolimod Hydrochloride/pharmacology , Glial Cell Line-Derived Neurotrophic Factor/drug effects , Glial Cell Line-Derived Neurotrophic Factor/metabolism , Myelin-Associated Glycoprotein/drug effects , Myelin-Associated Glycoprotein/metabolism , Nerve Growth Factor/drug effects , Nerve Growth Factor/metabolism , Oligodendroglia/metabolism , Rats , alpha-Synuclein/metabolism
7.
ChemistryOpen ; 8(2): 201-205, 2019 Feb.
Article in English | MEDLINE | ID: mdl-30815328

ABSTRACT

Exquisite control of catalytic metathesis reactivity is possible through ligand-based variation of ruthenium carbene complexes. Sterically hindered alkenes, however, remain a generally recalcitrant class of substrates for intermolecular cross-metathesis. Allylic chalcogenides (sulfides and selenides) have emerged as "privileged" substrates that exhibit enhanced turnover rates with the commercially available second-generation ruthenium catalyst. Increased turnover rates are advantageous when competing catalyst degradation is limiting, although specific mechanisms have not been defined. Herein, we describe facile cross-metathesis of allylic sulfone reagents with sterically hindered isoprenoid alkene substrates. Furthermore, we demonstrate the first example of intermolecular cross-metathesis of ruthenium carbenes with a tetrasubstituted alkene. Computational analysis by combined coupled cluster/DFT calculations exposes a favorable energetic profile for metallacyclobutane formation from chelating ruthenium ß-chalcogenide carbene intermediates. These results establish allylic sulfones as privileged reagents for a substrate-based strategy of cross-metathesis derivatization.

8.
Sci Signal ; 9(452): ra105, 2016 11 01.
Article in English | MEDLINE | ID: mdl-27803283

ABSTRACT

Pharmacological activation of the heptahelical G protein-coupled estrogen receptor (GPER) by selective ligands counteracts multiple aspects of cardiovascular disease. We thus expected that genetic deletion or pharmacological inhibition of GPER would further aggravate such disease states, particularly with age. To the contrary, we found that genetic ablation of Gper in mice prevented cardiovascular pathologies associated with aging by reducing superoxide (⋅O2-) formation by NADPH oxidase (Nox) specifically through reducing the expression of the Nox isoform Nox1 Blocking GPER activity pharmacologically with G36, a synthetic, small-molecule, GPER-selective blocker (GRB), decreased Nox1 abundance and ⋅O2- production to basal amounts in cells exposed to angiotensin II and in mice chronically infused with angiotensin II, reducing arterial hypertension. Thus, this study revealed a role for GPER activity in regulating Nox1 abundance and associated ⋅O2--mediated structural and functional damage that contributes to disease pathology. Our results indicated that GRBs represent a new class of drugs that can reduce Nox abundance and activity and could be used for the treatment of chronic disease processes involving excessive ⋅O2- formation, including arterial hypertension and heart failure.


Subject(s)
Aging/metabolism , Heart Failure/metabolism , Hypertension/metabolism , Receptors, Estrogen/metabolism , Aging/genetics , Aging/pathology , Animals , Benzodioxoles/pharmacology , Heart Failure/genetics , Heart Failure/pathology , Hypertension/genetics , Hypertension/pathology , Mice , Mice, Knockout , NADPH Oxidase 1/genetics , NADPH Oxidase 1/metabolism , Quinolines/pharmacology , Receptors, Estrogen/antagonists & inhibitors , Receptors, Estrogen/genetics , Superoxides/metabolism
9.
PLoS One ; 11(9): e0162162, 2016.
Article in English | MEDLINE | ID: mdl-27611691

ABSTRACT

Parkinson's disease (PD) is a neurodegenerative aging disorder in which postmortem PD brain exhibits neuroinflammation, as well as synucleinopathy-associated protein phosphatase 2A (PP2A) enzymatic activity loss. Based on our translational research, we began evaluating the PD-repurposing-potential of an anti-inflammatory, neuroprotective, and PP2A stimulatory oral drug that is FDA-approved for multiple sclerosis, FTY720 (fingolimod, Gilenya®). We also designed two new FTY720 analogues, FTY720-C2 and FTY720-Mitoxy, with modifications that affect drug potency and mitochondrial localization, respectively. Herein, we describe the metabolic stability and metabolic profiling of FTY720-C2 and FTY720-Mitoxy in liver microsomes and hepatocytes. Using mouse, rat, dog, monkey, and human liver microsomes the intrinsic clearance of FTY720-C2 was 22.5, 79.5, 6.0, 20.2 and 18.3 µL/min/mg; and for FTY720-Mitoxy was 1.8, 7.8, 1.4, 135.0 and 17.5 µL/min/mg, respectively. In hepatocytes, both FTY720-C2 and FTY720-Mitoxy were metabolized from the octyl side chain, generating a series of carboxylic acids similar to the parent FTY720, but without phosphorylated metabolites. To assess absorption and distribution, we gave equivalent single intravenous (IV) or oral doses of FTY720-C2 or FTY720-Mitoxy to C57BL/6 mice, with two mice per time point evaluated. After IV delivery, both FTY720-C2 and FTY720-Mitoxy were rapidly detected in plasma and brain; and reached peak concentrations at the first sampling time points. After oral dosing, FTY720-C2 was present in plasma and brain, although FTY720-Mitoxy was not orally bioavailable. Brain-to-plasma ratio of both compounds increased time-dependently, suggesting a preferential partitioning to the brain. PP2A activity in mouse adrenal gland increased ~2-fold after FTY720-C2 or FTY720-Mitoxy, as compared to untreated controls. In summary, FTY720-C2 and FTY720-Mitoxy both (i) crossed the blood-brain-barrier; (ii) produced metabolites similar to FTY720, except without phosphorylated species that cause S1P1-mediated-immunosuppression; and (iii) stimulated in vivo PP2A activity, all of which encourage additional preclinical assessment.


Subject(s)
Blood-Brain Barrier/metabolism , Fingolimod Hydrochloride/pharmacokinetics , Animals , Hepatocytes/metabolism , Humans , Male , Mice , Mice, Inbred C57BL , Microsomes, Liver/metabolism , Protein Phosphatase 2/metabolism , Rats
11.
Pharmacol Rev ; 67(3): 505-40, 2015 Jul.
Article in English | MEDLINE | ID: mdl-26023144

ABSTRACT

Estrogens are critical mediators of multiple and diverse physiologic effects throughout the body in both sexes, including the reproductive, cardiovascular, endocrine, nervous, and immune systems. As such, alterations in estrogen function play important roles in many diseases and pathophysiological conditions (including cancer), exemplified by the lower prevalence of many diseases in premenopausal women. Estrogens mediate their effects through multiple cellular receptors, including the nuclear receptor family (ERα and ERß) and the G protein-coupled receptor (GPCR) family (GPR30/G protein-coupled estrogen receptor [GPER]). Although both receptor families can initiate rapid cell signaling and transcriptional regulation, the nuclear receptors are traditionally associated with regulating gene expression, whereas GPCRs are recognized as mediating rapid cellular signaling. Estrogen-activated pathways are not only the target of multiple therapeutic agents (e.g., tamoxifen, fulvestrant, raloxifene, and aromatase inhibitors) but are also affected by a plethora of phyto- and xeno-estrogens (e.g., genistein, coumestrol, bisphenol A, dichlorodiphenyltrichloroethane). Because of the existence of multiple estrogen receptors with overlapping ligand specificities, expression patterns, and signaling pathways, the roles of the individual receptors with respect to the diverse array of endogenous and exogenous ligands have been challenging to ascertain. The identification of GPER-selective ligands however has led to a much greater understanding of the roles of this receptor in normal physiology and disease as well as its interactions with the classic estrogen receptors ERα and ERß and their signaling pathways. In this review, we describe the history and characterization of GPER over the past 15 years focusing on the pharmacology of steroidal and nonsteroidal compounds that have been employed to unravel the biology of this most recently recognized estrogen receptor.


Subject(s)
Estrogens/metabolism , Receptors, Estrogen/drug effects , Receptors, G-Protein-Coupled/drug effects , Animals , Female , Humans , Ligands , Male , Receptors, Estrogen/metabolism , Receptors, G-Protein-Coupled/metabolism , Signal Transduction/drug effects , Steroids/pharmacology
12.
Sci Rep ; 4: 7564, 2014 Dec 23.
Article in English | MEDLINE | ID: mdl-25532911

ABSTRACT

Coronary atherosclerosis and myocardial infarction in postmenopausal women have been linked to inflammation and reduced nitric oxide (NO) formation. Natural estrogen exerts protective effects on both processes, yet also displays uterotrophic activity. Here, we used genetic and pharmacologic approaches to investigate the role of the G protein-coupled estrogen receptor (GPER) in atherosclerosis. In ovary-intact mice, deletion of gper increased atherosclerosis progression, total and LDL cholesterol levels and inflammation while reducing vascular NO bioactivity, effects that were in some cases aggravated by surgical menopause. In human endothelial cells, GPER was expressed on intracellular membranes and mediated eNOS activation and NO formation, partially accounting for estrogen-mediated effects. Chronic treatment with G-1, a synthetic, highly selective small molecule agonist of GPER, reduced postmenopausal atherosclerosis and inflammation without uterotrophic effects. In summary, this study reveals an atheroprotective function of GPER and introduces selective GPER activation as a novel therapeutic approach to inhibit postmenopausal atherosclerosis and inflammation in the absence of uterotrophic activity.


Subject(s)
Atherosclerosis/metabolism , Endothelial Cells/metabolism , Postmenopause/metabolism , Receptors, Estrogen/metabolism , Receptors, G-Protein-Coupled/metabolism , Animals , Atherosclerosis/drug therapy , Atherosclerosis/genetics , Atherosclerosis/pathology , Cholesterol, LDL/genetics , Cholesterol, LDL/metabolism , Cyclopentanes/pharmacology , Female , Humans , Intracellular Membranes/metabolism , Mice , Mice, Knockout , Nitric Oxide/genetics , Nitric Oxide/metabolism , Postmenopause/genetics , Quinolines/pharmacology , Receptors, Estrogen/genetics , Receptors, G-Protein-Coupled/agonists , Receptors, G-Protein-Coupled/genetics
13.
Mol Cancer Res ; 12(11): 1635-43, 2014 Nov.
Article in English | MEDLINE | ID: mdl-25030373

ABSTRACT

UNLABELLED: Our understanding of estrogen (17ß-estradiol, E2) receptor biology has evolved in recent years with the discovery and characterization of a 7-transmembrane-spanning G protein-coupled estrogen receptor (GPER/GPR30) and the development of GPER-selective functional chemical probes. GPER is highly expressed in certain breast, endometrial, and ovarian cancers, establishing the importance of noninvasive methods to evaluate GPER expression in vivo. Here, we developed (99m)Tc-labeled GPER ligands to demonstrate the in vivo status of GPER as an estrogen receptor (ER) and for GPER visualization in whole animals. A series of (99m)Tc(I)-labeled nonsteroidal tetrahydro-3H-cyclopenta[c]quinolone derivatives was synthesized utilizing pyridin-2-yl hydrazine and picolylamine chelates. Radioligand receptor binding studies revealed binding affinities in the 10 to 30 nmol/L range. Cell signaling assays previously demonstrated that derivatives retaining a ketone functionality displayed agonist properties, whereas those lacking such a hydrogen bond acceptor were antagonists. In vivo biodistribution and imaging studies performed on mice bearing human endometrial and breast cancer cell xenografts yielded significant tumor uptake (0.4-1.1%ID/g). Blocking studies revealed specific uptake in multiple organs (adrenals, uterus, and mammary tissue), as well as tumor uptake with similar levels of competition by E2 and G-1, a GPER-selective agonist. In conclusion, we synthesized and evaluated a series of first-generation (99m)Tc-labeled GPER-specific radioligands, demonstrating GPER as an estrogen-binding receptor for the first time in vivo using competitive binding principles, and establishing the utility of such ligands as tumor imaging agents. These results warrant further investigation into the role of GPER in estrogen-mediated carcinogenesis and as a target for diagnostic/therapeutic/image-guided drug delivery. IMPLICATIONS: These studies provide a molecular basis to evaluate GPER expression and function as an ER through in vivo imaging.


Subject(s)
Diagnostic Imaging , Estrogens/metabolism , Neoplasms/diagnosis , Receptors, Estrogen/metabolism , Staining and Labeling , Technetium , Animals , Binding, Competitive , Cell Line, Tumor , Female , Humans , Immunohistochemistry , Ligands , Mice, Nude , Neoplasms/metabolism , Neoplasms/pathology , Ovariectomy , Quinolones/chemistry , Time Factors , Tissue Distribution , Xenograft Model Antitumor Assays
14.
ACS Med Chem Lett ; 5(7): 782-6, 2014 Jul 10.
Article in English | MEDLINE | ID: mdl-25050165

ABSTRACT

α-Synuclein is a chaperone-like protein implicated in Parkinson's disease (PD). Among α-synuclein's normal functions is an ability to bind to and stimulate the activity of the protein phosphatase 2A (PP2A) catalytic subunit in vitro and in vivo. PP2A activity is impaired in PD and in dementia with Lewy Bodies in brain regions harboring α-synuclein aggregates. Using PP2A as the readout, we measured PP2A activity in response to α-synuclein, ceramides, and FTY720, and then on the basis of those results, we created new FTY720 compounds. We then measured the effects of those compounds in dopaminergic cells. In addition to stimulating PP2A, all three compounds stimulated the expression of brain derived neurotrophic factor and protected MN9D cells against tumor-necrosis-factor-α-associated cell death. FTY720-C2 appears to be more potent while FTY720-Mitoxy targets mitochondria. Importantly, FTY720 is already FDA approved for treating multiple sclerosis and is used clinically worldwide. Our findings suggest that FTY720 and our new FTY720-based compounds have considerable potential for treating synucleinopathies such as PD.

15.
J Pharm Pharmacol ; 65(10): 1488-99, 2013 Oct.
Article in English | MEDLINE | ID: mdl-24028616

ABSTRACT

OBJECTIVES: The G protein-coupled oestrogen receptor-1 (GPER-1) agonist G1 induces endothelium-dependent relaxation. Activation of the epidermal growth factor (EGF) receptor leads to transduction of signals from the plasma membrane for the release of nitric oxide. We tested the hypothesis that G1 induces endothelium-dependent vasorelaxation through activation of the EGF receptor. METHODS: Rat aortic rings were mounted in organ baths. After pretreatment with various inhibitors, aortic rings contracted with 11,9-epoxymethano-prostaglandin F2α or KCl were subjected to relaxation by G1. KEY FINDINGS: G1 induced endothelium-dependent vasorelaxation, which was attenuated by pretreatment with either L -N(ω) -nitroarginine methyl ester (L -NAME), an inhibitor of nitric oxide synthase, or (3aS,4R,9bR)-4-(6-bromo-1,3-benzodioxol-5-yl)-3a,4,5,9b-tetrahydro-3H-cyclopenta[c]quinoline HB-EGF, heparin-binding EGF-like growth factor, a GPER-1 antagonist. Neither a general oestrogen receptor antagonist, ICI 182 780, nor a selective oestrogen receptor-α antagonist, methyl-piperidino-pyrazole dihydrochloride (MPP), had an effect on G1-induced vasorelaxation. However, pretreatment with EGF receptor blockers, AG1478 or DAPH, resulted in attenuated G1-induced vasorelaxation. In addition, pretreatment with Src inhibitor 4-amino-3-(4-chlorophenyl)-1-(t-butyl)-1H-pyrazolo[3,4-d]pyrimidine, 4-amino-5-(4-chlorophenyl)-7-(t-butyl)pyrazolo[3,4-d]pyrimidine or Akt inhibitor VIII also resulted in attenuated vascular relaxation induced by the cumulative addition of G1. However, neither phosphatidylinositol-3 kinase inhibitors LY294002 and wortmannin nor an extracellular signal-regulated kinase inhibitor 1,4-diamino-2,3-dicyano-1,4-bis(o-aminophenylmercapto) butadiene monoethanolate had effect on vascular relaxation induced by the cumulative addition of G1. CONCLUSIONS: G1 induces endothelium-dependent vasorelaxation through Src-mediated activation of the EGF receptor and the Akt pathway in rat aorta.


Subject(s)
ErbB Receptors/metabolism , Receptors, G-Protein-Coupled/agonists , Signal Transduction/drug effects , Vasodilation/drug effects , Vasodilator Agents/pharmacology , Animals , Aorta/drug effects , Aorta/metabolism , Aorta/physiopathology , Dose-Response Relationship, Drug , Endothelium, Vascular/drug effects , Endothelium, Vascular/physiopathology , ErbB Receptors/antagonists & inhibitors , In Vitro Techniques , Male , Proto-Oncogene Proteins c-akt/metabolism , Rats , Rats, Sprague-Dawley , Vasoconstrictor Agents/pharmacology , Vasodilator Agents/chemistry
16.
J Physiol ; 591(17): 4223-35, 2013 Sep 01.
Article in English | MEDLINE | ID: mdl-23878371

ABSTRACT

In addition to acting on mineralocorticoid receptors, aldosterone has been recently shown to activate the G protein-coupled oestrogen receptor (GPER) in vascular cells. In light of the newly identified role for GPER in vagal cardiac control, we examined whether or not aldosterone activates GPER in rat nucleus ambiguus. Aldosterone produced a dose-dependent increase in cytosolic Ca(2+) concentration in retrogradely labelled cardiac vagal neurons of nucleus ambiguus; the response was abolished by pretreatment with the GPER antagonist G-36, but was not affected by the mineralocorticoid receptor antagonists, spironolactone and eplerenone. In Ca(2+)-free saline, the response to aldosterone was insensitive to blockade of the Ca(2+) release from lysosomes, while it was reduced by blocking the Ca(2+) release via ryanodine receptors and abolished by blocking the IP3 receptors. Aldosterone induced Ca(2+) influx via P/Q-type Ca(2+) channels, but not via L-type and N-type Ca(2+) channels. Aldosterone induced depolarization of cardiac vagal neurons of nucleus ambiguus that was sensitive to antagonism of GPER but not of mineralocorticoid receptor. in vivo studies, using telemetric measurement of heart rate, indicate that microinjection of aldosterone into the nucleus ambiguus produced a dose-dependent bradycardia in conscious, freely moving rats. Aldosterone-induced bradycardia was blocked by the GPER antagonist, but not by the mineralocorticoid receptor antagonists. In summary, we report for the first time that aldosterone decreases heart rate by activating GPER in cardiac vagal neurons of nucleus ambiguus.


Subject(s)
Aldosterone/pharmacology , Heart/physiology , Receptors, Estrogen/metabolism , Vagus Nerve/physiology , Action Potentials , Animals , Calcium/metabolism , Calcium Signaling , Cells, Cultured , Heart/drug effects , Heart/innervation , Heart Rate , Male , Neurons/drug effects , Neurons/metabolism , Neurons/physiology , Rats , Rats, Sprague-Dawley , Receptors, Estrogen/antagonists & inhibitors , Receptors, Mineralocorticoid/metabolism , Selective Estrogen Receptor Modulators/pharmacology , Vagus Nerve/drug effects , Vagus Nerve/metabolism
17.
Exp Physiol ; 98(3): 679-91, 2013 Mar.
Article in English | MEDLINE | ID: mdl-23104934

ABSTRACT

The G protein-coupled estrogen receptor (GPER) has been identified in several brain regions, including cholinergic neurons of the nucleus ambiguus, which are critical for parasympathetic cardiac regulation. Using calcium imaging and electrophysiological techniques, microinjection into the nucleus ambiguus and blood pressure measurement, we examined the in vitro and in vivo effects of GPER activation in nucleus ambiguus neurons. A GPER selective agonist, G-1, produced a sustained increase in cytosolic Ca(2+) concentration in a concentration-dependent manner in retrogradely labelled cardiac vagal neurons of nucleus ambiguus. The increase in cytosolic Ca(2+) produced by G-1 was abolished by pretreatment with G36, a GPER antagonist. G-1 depolarized cultured cardiac vagal neurons of the nucleus ambiguus. The excitatory effect of G-1 was also identified by whole-cell visual patch-clamp recordings in nucleus ambiguus neurons, in medullary slices. To validate the physiological relevance of our in vitro studies, we carried out in vivo experiments. Microinjection of G-1 into the nucleus ambiguus elicited a decrease in heart rate; the effect was blocked by prior microinjection of G36. Systemic injection of G-1, in addition to a previously reported decrease in blood pressure, also reduced the heart rate. The G-1-induced bradycardia was prevented by systemic injection of atropine, a muscarinic antagonist, or by bilateral microinjection of G36 into the nucleus ambiguus. Our results indicate that GPER-mediated bradycardia occurs via activation of cardiac parasympathetic neurons of the nucleus ambiguus and support the involvement of the GPER in the modulation of cardiac vagal tone.


Subject(s)
Bradycardia/chemically induced , Medulla Oblongata/physiology , Receptors, Estrogen/physiology , Receptors, G-Protein-Coupled/physiology , Animals , Calcium/metabolism , Cyclopentanes/pharmacology , Heart/drug effects , Heart/physiology , Male , Medulla Oblongata/drug effects , Membrane Potentials/drug effects , Parasympathetic Nervous System/drug effects , Parasympathetic Nervous System/physiology , Quinolines/pharmacology , Rats , Rats, Wistar , Receptors, Estrogen/agonists , Receptors, Estrogen/antagonists & inhibitors , Receptors, G-Protein-Coupled/agonists , Receptors, G-Protein-Coupled/antagonists & inhibitors , Vagus Nerve/drug effects , Vagus Nerve/physiology
18.
Obstet Gynecol Int ; 2013: 472720, 2013.
Article in English | MEDLINE | ID: mdl-24379833

ABSTRACT

Endometrial carcinoma is the most common cancer of the female reproductive tract. GPER/GPR30 is a 7-transmembrane spanning G protein-coupled receptor that has been identified as the third estrogen receptor, in addition to ERα and ERß. High GPER expression is predictive of poor survival in endometrial and ovarian cancer, but despite this, the estrogen-mediated signaling pathways and specific estrogen receptors involved in endometrial cancer remain unclear. Here, employing ERα-negative Hec50 endometrial cancer cells, we demonstrate that GPER mediates estrogen-stimulated activation of ERK and PI3K via matrix metalloproteinase activation and subsequent transactivation of the EGFR and that ER-targeted therapeutic agents (4-hydroxytamoxifen, ICI182,780/fulvestrant, and Raloxifene), the phytoestrogen genistein, and the "ERα-selective" agonist propylpyrazole triol also function as GPER agonists. Furthermore, xenograft tumors of Hec50 cells yield enhanced growth with G-1 and estrogen, the latter being inhibited by GPER-selective pharmacologic antagonism with G36. These results have important implications with respect to the use of putatively ER-selective ligands and particularly for the widespread long-term use of "ER-targeted" therapeutics. Moreover, our findings shed light on the potential mechanisms of SERM/SERD side effects reported in many clinical studies. Finally, our results provide the first demonstration that pharmacological inhibition of GPER activity in vivo prevents estrogen-mediated tumor growth.

19.
PLoS One ; 7(10): e46861, 2012.
Article in English | MEDLINE | ID: mdl-23077529

ABSTRACT

The discovery of the G protein-coupled estrogen receptor GPER (also GPR30) and the resulting development of selective chemical probes have revealed new aspects of estrogen receptor biology. The potential clinical relevance of this receptor has been suggested from numerous studies that have identified GPER expression in breast, endometrial, ovarian and other cancers. Thus GPER can be considered a candidate biomarker and target for non-invasive imaging and therapy. We have designed and synthesized a series of organometallic tricarbonyl-rhenium complexes conjugated to a GPER-selective small molecule derived from tetrahydro-3H-cyclopenta[c]quinoline. The activity and selectivity of these chelates in GPER-mediated signaling pathways were evaluated. These results demonstrate that GPER targeting characteristics depend strongly on the structure of the chelate and linkage. Ethanone conjugates functioned as agonists, a 1,2,3-triazole spacer yielded an antagonist, and derivatives with increased steric volume exhibited decreased activities. Promising GPER selectivity was observed, as none of the complexes interacted with the nuclear estrogen receptors. Radiolabeling with technetium-99m in aqueous media was efficient and gave radioligands with high radiochemical yields and purity. These chelates have favorable physicochemical properties, show excellent stability in biologically relevant media, exhibit receptor specificity and are promising candidates for continuing development as diagnostic imaging agents targeting GPER expression in cancer.


Subject(s)
Coordination Complexes/pharmacology , Quinolines/pharmacology , Receptors, Estrogen/agonists , Receptors, Estrogen/antagonists & inhibitors , Receptors, G-Protein-Coupled/agonists , Receptors, G-Protein-Coupled/antagonists & inhibitors , Rhenium/pharmacology , Technetium/pharmacology , Animals , COS Cells , Cell Line, Tumor , Chlorocebus aethiops , Coordination Complexes/chemical synthesis , Coordination Complexes/chemistry , Estrogen Receptor alpha/metabolism , Estrogen Receptor beta/metabolism , Humans , Quinolines/chemical synthesis , Quinolines/chemistry , Receptors, Estrogen/metabolism , Receptors, G-Protein-Coupled/metabolism , Rhenium/chemistry , Technetium/chemistry
20.
J Pain ; 13(8): 742-54, 2012 Aug.
Article in English | MEDLINE | ID: mdl-22858342

ABSTRACT

UNLABELLED: Human and animal studies suggest that estrogens are involved in the processing of nociceptive sensory information and analgesic responses in the central nervous system. Rapid pronociceptive estrogenic effects have been reported, some of which likely involve G protein-coupled estrogen receptor (GPER) activation. Membrane depolarization and increases in cytosolic calcium and reactive oxygen species (ROS) levels are markers of neuronal activation, underlying pain sensitization in the spinal cord. Using behavioral, electrophysiological, and fluorescent imaging studies, we evaluated GPER involvement in spinal nociceptive processing. Intrathecal challenging of mice with the GPER agonist G-1 results in pain-related behaviors. GPER antagonism with G15 reduces the G-1-induced response. Electrophysiological recordings from superficial dorsal horn neurons indicate neuronal membrane depolarization with G-1 application, which is G15 sensitive. In cultured spinal sensory neurons, G-1 increases intracellular calcium concentration and induces mitochondrial and cytosolic ROS accumulation. In the presence of G15, G-1 does not elicit the calcium and ROS responses, confirming specific GPER involvement in this process. Cytosolic calcium concentration elevates faster and with higher amplitude following G-1 intracellular microinjections compared to extracellular exposure, suggesting subcellular GPER functionality. Thus, GPER activation results in spinal nociception, and the downstream mechanisms involve cytosolic calcium increase, ROS accumulation, and neuronal membrane depolarization. PERSPECTIVE: Our results suggest that GPER modulates pain processing in spinal sensory neurons via cytosolic calcium increase and ROS accumulation. These findings extend the current knowledge on GPER involvement in physiology and disease, providing the first evidence of its pronociceptive effects at central levels and characterizing some of the underlying mechanisms.


Subject(s)
Nociception/physiology , Nociceptive Pain/metabolism , Receptors, Estrogen/metabolism , Receptors, G-Protein-Coupled/metabolism , Spinal Cord/pathology , Action Potentials/drug effects , Analgesics, Opioid/administration & dosage , Animals , Animals, Newborn , Behavior, Animal/drug effects , Benzodioxoles/administration & dosage , Calcium/metabolism , Cells, Cultured , Cyclopentanes/pharmacology , Disease Models, Animal , Dose-Response Relationship, Drug , Drug Administration Schedule , Drug Interactions , Female , Gene Expression Regulation/drug effects , In Vitro Techniques , Male , Mice , Mice, Inbred ICR , Microinjections , Morphine/administration & dosage , Neurons/drug effects , Neurons/physiology , Nociception/drug effects , Nociceptive Pain/drug therapy , Nociceptive Pain/pathology , Pain Measurement , Patch-Clamp Techniques , Quinolines/administration & dosage , Quinolines/pharmacology , Rats , Rats, Sprague-Dawley , Reactive Oxygen Species/metabolism , Receptors, Estrogen/antagonists & inhibitors , Receptors, Estrogen/genetics , Receptors, G-Protein-Coupled/genetics , Spinal Cord/cytology , Superoxides/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...