Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Rev Sci Instrum ; 89(10): 10E119, 2018 Oct.
Article in English | MEDLINE | ID: mdl-30399824

ABSTRACT

In an electron beam ion trap (EBIT), the ions are not confined to the electron beam, but rather oscillate in and out of the beam. As a result, the ions do not continuously experience the full density of the electron beam. To determine the effective electron density, n e,eff, experienced by the ions, the electron beam size, the nominal electron density n e, and the ion distribution around the beam, i.e., the so-called ion cloud, must be measured. We use imaging techniques in the extreme ultraviolet (EUV) and optical to determine these. The electron beam width is measured using 3d → 3p emission from Fe xii and xiii between 185 and 205 Å. These transitions are fast and the EUV emission occurs only within the electron beam. The measured spatial emission profile and variable electron current yield a nominal electron density range of n e ∼ 1011-1013 cm-3. We determine the size of the ion cloud using optical emission from metastable levels of ions with radiative lifetimes longer than the ion orbital periods. The resulting emission maps out the spatial distribution of the ion cloud. We find a typical electron beam radius of ∼60 µm and an ion cloud radius of ∼300 µm. These yield a spatially averaged effective electron density, n e,eff, experienced by the ions in EBIT spanning ∼ 5 × 109-5 × 1011 cm-3.

2.
Rev Sci Instrum ; 89(10): 10F121, 2018 Oct.
Article in English | MEDLINE | ID: mdl-30399853

ABSTRACT

The Orion high-resolution X-ray (OHREX) imaging spherically bent crystal spectrometer, operated with both image plates and CCD cameras, provides time-averaged plasma diagnostics through high-resolution spectroscopy with good signal-to-noise at the Orion laser facility. In order to provide time-resolved spectra, the OHREX will be outfitted with a streak camera, and in this case, even higher signal to noise will be desired. Using the OHREX's sister instrument, the EBIT High-resolution X-ray (EBHiX) spectrometer, at the LLNL electron beam ion trap EBIT-I, we therefore compare the efficiency of a high-quality Ge (111) crystal (2d = 6.532 Å) with that of a higher integrated reflectivity, but lower-resolution highly annealed pyrolytic graphite (HAPG) crystal (2d = 6.708 Å) in the energy range 2408-2452 eV. We find that the HAPG provides overall more signal across the entire image; however, because of the much better focusing properties of the Ge crystal, the latter provides more signal within the central 100 µm of the spatial profile in the cross-dispersion direction and is thus more suitable for the narrow entrance window of the Livermore-built streak camera.

3.
Phys Rev Lett ; 119(8): 083402, 2017 Aug 25.
Article in English | MEDLINE | ID: mdl-28952760

ABSTRACT

We have measured fully differential cross sections for electron capture in 75 keV p+H_{2} collisions with subsequent dissociation of the intermediate molecular H_{2}^{+} ion by vibrational excitation using different projectile coherence lengths. Data were obtained for two molecular orientations as a function of projectile scattering angle. Two types of interference, single- and molecular two-center interference, were identified. The two-center interference structure is phase shifted by π compared to what we expected. Furthermore, the presence of projectile coherence effects could be reconfirmed.

SELECTION OF CITATIONS
SEARCH DETAIL
...