Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Toxicol Rep ; 3: 310-327, 2016.
Article in English | MEDLINE | ID: mdl-28959552

ABSTRACT

A toxicological evaluation of two novel bitter modifying flavour compounds, 3-(1-((3,5-dimethylisoxazol-4-yl)methyl)-1H-pyrazol-4-yl)-1-(3-hydroxybenzyl)imidazolidine-2,4-dione (S6821, CAS 1119831-25-2) and 3-(1-((3,5-dimethylisoxazol-4-yl)methyl)-1H-pyrazol-4-yl)-1-(3-hydroxybenzyl)-5,5-dimethylimidazolidine-2,4-dione (S7958, CAS 1217341-48-4), were completed for the purpose of assessing their safety for use in food and beverage applications. S6821 undergoes oxidative metabolism in vitro, and in rat pharmacokinetic studies both S6821 and S7958 are rapidly converted to the corresponding O-sulfate and O-glucuronide conjugates. S6821 was not found to be mutagenic or clastogenic in vitro, and did not induce micronuclei in bone marrow polychromatic erythrocytes in vivo. S7958, a close structural analog of S6821, was also found to be non-mutagenic in vitro. In short term and subchronic oral toxicity studies in rats, the no-observed-adverse-effect-level (NOAEL) for both S7958 and S6821 was 100 mg/kg bw/day (highest dose tested) when administered as a food ad-mix for either 28 or 90 consecutive days, respectively. Furthermore, S6821 demonstrated a lack of maternal toxicity, as well as adverse effects on fetal morphology at the highest dose tested, providing a NOAEL of 1000 mg/kg bw/day for both maternal toxicity and embryo/fetal development when administered orally during gestation to pregnant rats.

2.
Toxicol Rep ; 3: 501-512, 2016.
Article in English | MEDLINE | ID: mdl-28959573

ABSTRACT

A toxicological evaluation of a umami flavour compound, 2-(((3-(2,3-dimethoxyphenyl)-1H-1,2,4-triazol-5-yl)thio)methyl)pyridine (S3643; CAS 902136-79-2), was completed for the purpose of assessing its safety for use in food and beverage applications. S3643 undergoes extensive oxidative metabolism in vitro with rat microsomes producing the S3643-sulfoxide and 4'-hydroxy-S3643 as the major metabolites. In incubations with human microsomes, the O-demethyl-S3643 and S3643-sulfoxide were produced as the major metabolites. In pharmacokinetic studies in rats, the S3643-sulfoxide represents the dominant biotransformation product. S3643 was not found to be mutagenic or clastogenic in vitro, and did not induce micronuclei in CHO-WBL cells. In subchronic oral toxicity studies in rats, the no-observed-adverse-effect-level (NOAEL) for S3643 was 100 mg/kg bw/day (highest dose tested) when administered in the diet for 90 consecutive days.

3.
Toxicol Rep ; 3: 841-860, 2016.
Article in English | MEDLINE | ID: mdl-28959612

ABSTRACT

Toxicological evaluations of two N-alkyl benzamide umami flavour compounds, N-(heptan-4-yl)benzo[d][1,3]dioxole-5-carboxamide (S807, CAS 745047-51-2) and (R)-N-(1-methoxy-4-methylpentan-2-yl)-3,4-dimethylbenzamide (S9229, CAS 851669-60-8), were completed for the purpose of assessing their safety for use in food and beverage applications. Both S807 and S9229 undergo rapid oxidative metabolism by both rat and human liver microsomes in vitro. In pharmacokinetic studies in rats, the systemic exposure to S9229 on oral administration is very low at all doses (% F < 1%), while that of S807 demonstrated a non-linear dose dependence. In metabolism studies in rats, hydroxylation of the C-4 aryl methyl group was found to be the dominant metabolic pathway for S9229. The dominant metabolic pathway for S807 in the rat involved oxidative scission of the methylenedioxy moiety to produce the corresponding 3,4-dihydroxybenamide which is further converted by Phase II metabolic enzymes to the 3- and 4-O-methyl ethers as well as their corresponding glucuronides. Both S807 and S9229 were not found to be mutagenic or clastogenic in vitro, and did not induce micronuclei in polychromatic erythrocytes in vivo. In a subchronic oral toxicity study in rats, the no-observed-effect-level (NOEL) for S807 was 20 mg/kg bw/day when administered in the diet for 13 weeks. The no-observed-adverse-effect-level (NOAEL) for S9229 in rats was 100 mg/kg bw/day (highest dose tested) when administered in the diet for 28 consecutive days.

4.
Toxicol Rep ; 2: 1255-1264, 2015.
Article in English | MEDLINE | ID: mdl-28962468

ABSTRACT

A toxicological evaluation of 4-amino-5-(3-(isopropylamino)-2,2-dimethyl-3-oxopropoxy)-2-methylquinoline-3-carboxylic acid(S9632; CAS 1359963-68-0), a flavour with modifying properties,was completed for the purpose of assessing its safety for use in food and beverage applications. No Phase I biotransformations of S9632 were observed in rat or human microsomes in vitro, and in rat pharmacokinetic studies, the compound was poorly orally bioavailable and rapidly eliminated. S9632 was not found to be mutagenic or clastogenic in vitro, and did not induce micronuclei or indicate interactions with the mitotic spindle in an in vivo mouse micronucleus assay at oral doses up to 2000 mg/kg. In subchronic oral toxicity studies in rats, the NOEL was 100 mg/kg/day (highest dose tested) for S9632 when administered as a food ad-mix for 90 consecutive days. Furthermore, S9632 demonstrated a lack of maternal toxicity, as well as adverse effects on fetal morphology at the highest dose tested, providing a NOEL of 1000 mg/kg/day for both maternal toxicity and embryo/fetal development when administered orally during gestation to pregnant rats.

5.
Toxicol Rep ; 2: 1291-1309, 2015.
Article in English | MEDLINE | ID: mdl-28962472

ABSTRACT

A toxicological evaluation of a novel cooling agent, 2-(4-methylphenoxy)-N-(1H-pyrazol-3-yl)-N-(2-thienylmethyl) acetamide (S2227; CAS 1374760-95-8), was completed for the purpose of assessing its safety for use in food and beverage applications. S2227 undergoes rapid oxidative metabolism in vitro, and in rat and dog pharmacokinetic studies is rapidly converted to its component carboxylic acid and secondary amine. S2227 was not found to be mutagenic or clastogenic in vitro, and did not induce micronuclei in polychromatic erythrocytes in vivo. The secondary amine hydrolysis product, N-(2-thienylmethyl)-1H-pyrazol-3-amine (M179), was also evaluated for genotoxicity. In subchronic oral toxicity studies in rats, the no-observed-adverse-effect-level (NOAEL) for S2227 was 100 mg/kg/day (highest dose tested) when administered by oral gavage for 90 consecutive days. Furthermore, S2227 demonstrated a lack of maternal toxicity, as well as adverse effects on fetal morphology at the highest dose tested, providing a NOAEL of 1000 mg/kg/day for both maternal toxicity and embryo/fetal development when administered orally during gestation to pregnant rats.

6.
Food Chem Toxicol ; 76: 33-45, 2015 Feb.
Article in English | MEDLINE | ID: mdl-25434309

ABSTRACT

A toxicological evaluation of two structurally related flavors with modifying properties, 3-((4-amino-2,2-dioxido-1H- benzo[c][1,2,6]thiadiazin-5-yl)oxy)-2,2-dimethyl-N-propylpropanamide (S6973; CAS 1093200-92-0) and (S)-1-(3-(((4-amino-2,2-dioxido-1H-benzo[c][1,2,6]thiadiazin-5-yl)oxy)methyl)piperidin-1-yl)-3-methylbutan-1-one (S617; CAS 1469426-64-9), was completed for the purpose of assessing their safety for use in food and beverage applications. Both compounds exhibited minimal oxidative metabolism in vitro, and in rat pharmacokinetic studies, were poorly absorbed and rapidly eliminated. Neither compound exhibited genotoxic concerns. S6973 and S617 were not found to be mutagenic or clastogenic, and did not induce micronuclei in vitro or in vivo. In subchronic oral toxicity studies in rats, the no-observed-adverse-effect-levels (NOAELs) were 20 mg/kg/day and 100 mg/kg/day (highest doses tested) for S6973 and S617, respectively, when administered as a food ad-mix for 90 consecutive days. Furthermore, S617 demonstrated a lack of maternal toxicity, as well as adverse effects on fetal morphology at the highest dose tested, providing a NOAEL of 1000 mg/kg/day for both maternal toxicity and embryo/fetal development when administered orally during gestation to pregnant rats.


Subject(s)
Benzothiadiazines/toxicity , Cyclic S-Oxides/toxicity , Flavoring Agents/toxicity , Animals , Chromosome Aberrations/chemically induced , DNA Damage/drug effects , Dose-Response Relationship, Drug , Female , Flavoring Agents/pharmacokinetics , Macaca fascicularis , Male , Micronucleus Tests , Mutagenicity Tests , Mutagens/toxicity , No-Observed-Adverse-Effect Level , Organ Size/drug effects , Pregnancy , Rats , Rats, Sprague-Dawley , Toxicity Tests
7.
J Obstet Gynecol Neonatal Nurs ; 38(5): 624-31, 2009.
Article in English | MEDLINE | ID: mdl-19883485

ABSTRACT

Women's health care in the United States has been described as unsatisfactory and falling behind the Healthy People 2010 objectives. Inadequate health care due to a shortage of providers is especially problematic for women who are poor with lower socioeconomic status. Advanced practice nurses are well suited to address this need. In this article, preceptor and academic partnerships are discussed as strategies to make more qualified women's health and infant providers available.


Subject(s)
Advanced Practice Nursing , Clinical Competence , Education, Nursing, Graduate/organization & administration , Maternal-Child Nursing , Preceptorship/organization & administration , Adaptation, Psychological , Advanced Practice Nursing/education , Advanced Practice Nursing/organization & administration , Attitude of Health Personnel , Career Choice , Female , Health Services Needs and Demand , Healthcare Disparities , Humans , Infant , Infant Welfare , Job Satisfaction , Maternal-Child Nursing/education , Maternal-Child Nursing/organization & administration , Mentors/education , Mentors/psychology , Models, Educational , Models, Nursing , Nurse's Role , United States , Women's Health
SELECTION OF CITATIONS
SEARCH DETAIL
...