Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
J Morphol ; 269(5): 630-7, 2008 May.
Article in English | MEDLINE | ID: mdl-18196572

ABSTRACT

Female yellow dung flies, Scathophaga stercoraria, can influence the traffic of sperm stored in their spermathecae to the site of fertilization in the bursa copulatrix. However, the anatomical mechanisms employed are largely unknown. We investigated the anatomy of the female genital tract, seeking structures involved in sperm transfer and egg fertilization. We found a membranous structure descending from the ends of the spermathecal and accessory gland ducts into the bursa copulatrix. We call this the prolatus. Sperm accumulate in the prolatus during oviposition. When an egg is in the bursa the egg micropyle, rather than being aligned towards the dorsal openings of the spermathecal ducts, lies on the opposite, ventral side. We also confirm the presence, and suggest a function for, a cuticularized pouch on the ventral wall of the anterior bursa copulatrix. This pouch, plus a previously undescribed chamber, may be homologous to the ventral receptacle/fertilization chamber found in other dipterans. Further, we describe a translucent cap, apparently transversed by channels, covering the micropyle. Sperm were observed to aggregate on and in the micropyle cap, which appears to attract and hold sperm. We interpret the prolatus as a structure that allows an ovipositing female to transfer a few sperm onto the ventral bursal wall and thus, indirectly, onto the micropyle cap. Such anatomy potentially gives the female a large degree of control over sperm traffic from storage to the site of fertilization.


Subject(s)
Diptera/anatomy & histology , Fertilization/physiology , Genitalia, Female/anatomy & histology , Genitalia, Male/anatomy & histology , Reproduction/physiology , Animals , Diptera/physiology , Female , Genitalia, Female/physiology , Genitalia, Male/physiology , Male , Microscopy, Confocal , Microscopy, Fluorescence , Oviposition/physiology , Spermatogenesis/physiology
2.
Curr Biol ; 8(21): 1187-90, 1998 Oct 22.
Article in English | MEDLINE | ID: mdl-9799737

ABSTRACT

Sexual differentiation in Drosophila is controlled by a short cascade of regulatory genes, the expression pattern of which determines all aspects of maleness and femaleness, including complex behaviours displayed by males and females [1-3]. One sex-determining gene is transformer (tra), the activity of which is needed for female development. Flies with a female karyotype (XX) but which are mutant for tra develop and behave as males. In such flies, a female phenotype can be restored by a transgene that carries the female-specific cDNA of tra under the control of a heat-shock promoter. This transgene, called hs[trafem], also transforms XY animals into sterile females [4]. When we raised these XX and XY 'females' at 25 degreesC, however, they displayed vigorous male courtship while at the same time, as a result of their female pheromone pattern, they were attractive to males. Intriguingly, their male courtship behaviour was indiscriminately directed towards both females and males. When we forced expression of tra by heat shock, applied during a limited period around puparium formation, male behaviour was abolished and replaced by female behaviour. We conclude that sexual behaviour is irreversibly programmed during a critical period as a result of the activity or inactivity of a single control gene.


Subject(s)
Drosophila melanogaster/physiology , Sexual Behavior, Animal , Animals , Drosophila melanogaster/genetics , Female , Genes, Insect , Infertility, Female/genetics , Male , Models, Biological , Phenotype , Sex Characteristics , X Chromosome , Y Chromosome
SELECTION OF CITATIONS
SEARCH DETAIL
...