Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
2.
Nanoscale Adv ; 3(13): 3835-3845, 2021 Jun 30.
Article in English | MEDLINE | ID: mdl-36133019

ABSTRACT

GaN-on-diamond is a promising route towards reliable high-power transistor devices with outstanding performances due to better heat management, replacing common GaN-on-SiC technologies. Nevertheless, the implementation of GaN-on-diamond remains challenging. In this work, the selective area growth of GaN nanostructures on cost-efficient, large-scale available heteroepitaxial diamond (001) substrates by means of plasma-assisted molecular beam epitaxy is investigated. Additionally, we discuss the influence of an AlN buffer on the morphology of the GaN nanostructures. The nanowires and nanofins are characterized by a very high selectivity and controllable dimensions. Low temperature photoluminescence measurements are used to evaluate their structural quality. The growth of two GaN crystal domains, which are in-plane rotated against each other by 30°, is observed. The favoring of a certain domain is determined by the off-cut direction of the diamond substrates. By X-ray diffraction we show that the GaN nanostructures grow perpendicular to the diamond surface on off-cut diamond (001) substrates, which is in contrast to the growth on diamond (111), where the nanostructures are aligned with the substrate lattice. Polarity-selective wet chemical etching and Kelvin probe force microscopy reveal that the GaN nanostructures grow solely in the Ga-polar direction. This is a major advantage compared to the growth on diamond (111) and enables the application of GaN nanostructures on cost-efficient diamond for high-power/high-frequency applications.

3.
Nanoscale ; 11(10): 4578-4584, 2019 Mar 07.
Article in English | MEDLINE | ID: mdl-30809617

ABSTRACT

In this work, the selective area growth of GaN nanowalls and nanogrids on sapphire and GaN on sapphire by molecular beam epitaxy is investigated. We demonstrate the fabrication of homogeneous GaN nanowall arrays with different widths, distances and specific crystallographic side facets. Photoluminescence spectroscopy of as-grown GaN nanowalls reveals a high crystal quality and low defect density. Moreover, a distinct dependence of the nanowall width and the intensity of the donor-bound exciton emission on the crystal orientation of the sidewall facets is found and explained by different surface states for a-plane and m-plane GaN. The waveguide character of the GaN nanowalls, given by the large refractive index of GaN and the subwavelength size of the structures, is analysed by experimental transmission measurements and numerical simulations. Our results and the high epitaxial control achieved by selective area growth show the potential of tailor-made nanowall-based devices, e.g., in photocatalysis or nanofluidics.

SELECTION OF CITATIONS
SEARCH DETAIL
...