Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Biomech Model Mechanobiol ; 22(2): 379-400, 2023 Apr.
Article in English | MEDLINE | ID: mdl-36571624

ABSTRACT

Noninvasive estimation of joint loads is still an open challenge in biomechanics. Although musculoskeletal modeling represents a solid resource, multiple improvements are still necessary to obtain accurate predictions of joint loads and to translate such potential into practical utility. The present study, focused on the hip joint, is aimed at reviewing the state-of-the-art literature on the estimation of hip joint reaction forces through musculoskeletal modeling. Our literature inspection, based on well-defined selection criteria, returned seventeen works, which were compared in terms of methods and results. Deviations between predicted and in vivo measured hip joint loads, taken from the OrthoLoad database, were assessed through quantitative deviation indices. Despite the numerous modeling and computational improvements made over the last two decades, predicted hip joint loads still deviate from their experimental counterparts and typically overestimate them. Several critical aspects have emerged that affect muscle force estimation, hence joint loads. Among them, the physical fidelity of the musculoskeletal model, with its parameters and geometry, plays a crucial role. Also, predicted joint loads are markedly affected by the selected muscle recruitment strategy, which reflects the underlying motor control policy. Practical guidelines for researchers interested in noninvasive estimation of hip joint loads are also provided.


Subject(s)
Hip Joint , Muscles , Hip Joint/physiology , Muscles/physiology , Mechanical Phenomena , Biomechanical Phenomena
2.
Adv Funct Mater ; 31(20)2021 May 17.
Article in English | MEDLINE | ID: mdl-34335133

ABSTRACT

Like ready-to-wear clothing, medical devices come in a fixed set of sizes. While this may accommodate a large fraction of the patient population, others must either experience suboptimal results due to poor sizing or must do without the device. Although techniques have been proposed to fabricate patient-specific devices in advance of a procedure, this process is expensive and time consuming. An alternative solution that provides every patient with a tailored fit is to create devices that can be customized to the patient's anatomy as they are delivered. This paper reports an in vivo molding process in which a soft flexible photocurable stent is delivered into the trachea or bronchi over a UV-transparent balloon. The balloon is expanded such that the stent conforms to the varying cross-sectional shape of the airways. UV light is then delivered through the balloon curing the stent into its expanded conformal shape. The potential of this method is demonstrated using phantom, ex vivo and in vivo experiments. This approach can produce stents providing equivalent airway support to those made from standard materials while providing a customized fit.

3.
IEEE Trans Haptics ; 13(1): 197-203, 2020.
Article in English | MEDLINE | ID: mdl-31995500

ABSTRACT

Haptic shared control enables a human operator and an autonomous controller to share the control of a robotic system using haptic active constraints. It has been used in robotic teleoperation for different purposes, such as navigating along paths minimizing the torques requested to the manipulator or avoiding possibly dangerous areas of the workspace. However, few works have focused on using these ideas to account for the user's comfort. In this article, we present an innovative haptic-enabled shared control approach aimed at minimizing the user's workload during a teleoperated manipulation task. Using an inverse kinematic model of the human arm and the rapid upper limb assessment (RULA) metric, the proposed approach estimates the current user's comfort online. From this measure and an a priori knowledge of the task, we then generate dynamic active constraints guiding the users towards a successful completion of the task, along directions that improve their posture and increase their comfort. Studies with human subjects show the effectiveness of the proposed approach, yielding a 30% perceived reduction of the workload with respect to using standard guided human-in-the-loop teleoperation.


Subject(s)
Ergonomics , Feedback, Sensory , Robotics , Telemetry , Touch Perception , Biomechanical Phenomena , Equipment Design , Female , Humans , Male , Man-Machine Systems , User-Computer Interface
SELECTION OF CITATIONS
SEARCH DETAIL
...