Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters











Database
Language
Publication year range
1.
Adv Mater ; 36(21): e2311745, 2024 May.
Article in English | MEDLINE | ID: mdl-38300183

ABSTRACT

The primary performance limitation in inverted perovskite-based solar cells is the interface between the fullerene-based electron transport layers and the perovskite. Atomic layer deposited thin aluminum oxide (AlOX) interlayers that reduce nonradiative recombination at the perovskite/C60 interface are developed, resulting in >60 millivolts improvement in open-circuit voltage and 1% absolute improvement in power conversion efficiency. Surface-sensitive characterizations indicate the presence of a thin, conformally deposited AlOx layer, functioning as a passivating contact. These interlayers work universally using different lead-halide-based absorbers with different compositions where the 1.55 electron volts bandgap single junction devices reach >23% power conversion efficiency. A reduction of metallic Pb0 is found and the compact layer prevents in- and egress of volatile species, synergistically improving the stability. AlOX-modified wide-bandgap perovskite absorbers as a top cell in a monolithic perovskite-silicon tandem enable a certified power conversion efficiency of 29.9% and open-circuit voltages above 1.92 volts for 1.17 square centimeters device area.

2.
Science ; 381(6653): 59-63, 2023 Jul 07.
Article in English | MEDLINE | ID: mdl-37410835

ABSTRACT

Silicon solar cells are approaching their theoretical efficiency limit of 29%. This limitation can be exceeded with advanced device architectures, where two or more solar cells are stacked to improve the harvesting of solar energy. In this work, we devise a tandem device with a perovskite layer conformally coated on a silicon bottom cell featuring micrometric pyramids-the industry standard-to improve its photocurrent. Using an additive in the processing sequence, we regulate the perovskite crystallization process and alleviate recombination losses occurring at the perovskite top surface interfacing the electron-selective contact [buckminsterfullerene (C60)]. We demonstrate a device with an active area of 1.17 square centimeters, reaching a certified power conversion efficiency of 31.25%.

3.
Article in English | MEDLINE | ID: mdl-36758226

ABSTRACT

Tin fluoride (SnF2) is an indispensable additive for high-efficiency Pb-Sn perovskite solar cells (PSCs). However, the spatial distribution of SnF2 in the perovskite absorber is seldom investigated while essential for a comprehensive understanding of the exact role of the SnF2 additive. Herein, we revealed the spatial distribution of the SnF2 additive and made structure-optoelectronic properties-flexible photovoltaic performance correlation. We observed the chemical transformation of SnF2 to a fluorinated oxy-phase on the Pb-Sn perovskite film surface due to its rapid oxidation. In addition, at the buried perovskite interface, we detected and visualized the accumulation of F- ions. We found that the photoluminescence quantum yield of Pb-Sn perovskite reached the highest value with 10 mol % SnF2 in the precursor solution. When integrating the optimized absorber in flexible devices, we obtained the flexible Pb-Sn perovskite narrow bandgap (1.24 eV) solar cells with an efficiency of 18.5% and demonstrated 23.1% efficient flexible four-terminal all-perovskite tandem cells.

SELECTION OF CITATIONS
SEARCH DETAIL