Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Metrologia ; 58(5)2021.
Article in English | MEDLINE | ID: mdl-36733973

ABSTRACT

We present the first measurements of kilowatt laser power with an uncertainty less than 1 %. These represent progress toward the most accurate measurements of laser power above 1 kW at 1070 nm wavelength and establish a more precise link between force metrology and laser power metrology. Radiation pressure, or photon momentum, is a relatively new method of non-destructively measuring laser power. We demonstrate how a multiple reflection optical system amplifies the pressure of a kilowatt class laser incoherently to improve the signal to noise ratio in a radiation pressure-based measurement. With 14 incoherent reflections of the laser, we measure a total uncertainty of 0.26 % for an input power of 10 kW and 0.46 % for an input power of 1 kW at the 95 % confidence level. These measurements of absolute power are traceable to the SI kilogram and mark a state-of-the-art improvement in measurement precision by a factor of four.

2.
Opt Express ; 28(9): 13310-13322, 2020 Apr 27.
Article in English | MEDLINE | ID: mdl-32403809

ABSTRACT

We present a small power meter that detects the radiation pressure of an incident high-power laser. Given its small package and non-destructive interaction with the laser, this power meter is well suited to realizing a robust real-time, high-accuracy power measurement in laser-based manufacturing environments. The incident laser power is determined through interferometric measurement of displacement of a 20 mm diameter high reflectivity mirror, mounted at the center of a dual element spiral flexure. This device can measure laser power from 25 W to 400 W with a 260 m W/H z noise floor and ≤ 3.2% expanded uncertainty. We validate our device against a calibrated thermopile with simultaneous measurements of an unpolarized 1070 nm laser and report good agreement between the two systems. Finally, by referencing to an identical mechanical spring that does not see the incident laser, we suppress vibration noise in the power measurement by 14.8 dB over a 600 Hz measured bandwidth. This is an improvement over other radiation pressure based power meters that have previously been demonstrated.

3.
Opt Lett ; 41(17): 4142-5, 2016 Sep 01.
Article in English | MEDLINE | ID: mdl-27607993

ABSTRACT

We describe an energy transfer process whereby a moving particle loses (or gains) kinetic energy upon interacting with the moving optical potential of a swept beam of light. This approach is akin to a gravitational assist maneuver for interplanetary satellite propulsion. Special consideration is given to the stopping condition. For analytical convenience, we examine the Rayleigh scattering regime, providing examples at small and large scattering angles. A 5% uncertainty in the initial particle speed and position has negligible effect on the slowing/speeding ability when the beam size is much larger than the particle.

4.
Appl Opt ; 53(31): I1-9, 2014 Nov 01.
Article in English | MEDLINE | ID: mdl-25402931

ABSTRACT

The intensity-dependent rocking frequency of an illuminated semicylindrical refractive rod (or "optical wing") on a flat, nonslip surface is investigated. Both longitudinal and transverse radiation pressure forces (scatter and lift forces), as well as radiation pressure torque, transform the mechanical system into one having a bistable potential energy above a critical intensity. The equation of motion may be written as a parametrically driven nonlinear bistable harmonic oscillator, resulting in complex rocking dynamics. The effects of linear and sinusoidal intensity modulation schemes are explored, and experimental conditions to verify these results are discussed.

5.
Opt Lett ; 38(6): 935-7, 2013 Mar 15.
Article in English | MEDLINE | ID: mdl-23503265

ABSTRACT

An optical wing is a cambered rod that experiences a force and torque owing to the reflection and transmission of light from the surface. Here we address how such a wing may be designed to maintain an efficient thrust from radiation pressure (RP) while also providing a torque that returns the wing to a source facing orientation. The torsional stiffness of two different wing cross-sections is determined from numerical ray-tracing analyses. These results demonstrate the potential to construct a passive sun-tracking, space flight system or a microscopic surface measurement device based on RP force and torque.

SELECTION OF CITATIONS
SEARCH DETAIL
...