Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Polymers (Basel) ; 16(2)2024 Jan 12.
Article in English | MEDLINE | ID: mdl-38257024

ABSTRACT

Three-phase polymer composites are promising materials for creating electronic device components. The qualitative and quantitative composition of such composites has a significant effect on their functional, in particular dielectric properties. In this study, ceramic filler K2Ni0.93Ti7.07O16 (KNTO) with Ag coating as conductive additive (0.5, 1.0, 2.5 wt.%) was introduced into the polyvinylidene difluoride (PVDF) polymer matrix in amounts of 7.5, 15, 22.5, and 30 vol.%. to optimize the dielectric constant and dielectric loss tangent. The filler was characterized by X-ray phase analysis, Fourier-transform infrared spectroscopy and Scanning electron microscopy methods. The dielectric constant, dielectric loss tangent, and conductivity of three-phase composites KNTO@Ag-PVDF were studied in comparison with two-phase composites KNTO-PVDF in the frequency range from 102 Hz to 106 Hz. The dielectric constant values of composites containing 7.5, 15, 22.5, and 30 vol.% filler were 12, 13, 17.4, 19.2 for pure KNTO and 13, 19, 25, 31 for KNTO@Ag filler (2.5 wt.%) at frequency 10 kHz. The dielectric loss tangent ranged from 0.111 to 0.340 at a filler content of 7.5 to 30 vol.%. A significantly enhanced balance of dielectric properties of PVDF-based composites was found with K2Ni0.93Ti7.07O16 as ceramic filler for 1 wt.% of silver. Composites KNTO@Ag(1 wt.%)-PVDF can be applied as dielectrics for passive elements of flexible electronics.

2.
Nanomaterials (Basel) ; 13(16)2023 Aug 09.
Article in English | MEDLINE | ID: mdl-37630875

ABSTRACT

Effective low-grade waste heat harvesting and its conversion into electric energy by the means of thermoelectrochemical cells (TECs) are a strong theme in the field of renewable energy investigation. Despite considerable scientific research, TECs have not yet been practically applied due to the high cost of electrode materials and low effectiveness levels. A large hypothetical Seebeck coefficient allow the harvest of the low-grade waste heat and, particularly, to use TECs for collecting human body heat. This paper demonstrates the investigation of estimated hypothetical Seebeck coefficient dependency on KOH electrolyte concentration for TECs with hollow nanostructured Ni/NiO microsphere electrodes. It proposes a thermoelectrochemical cell with power density of 1.72 W·m-2 and describes the chemistry of electrodes and near-electrode space. Also, the paper demonstrates a decrease in charge transfer resistance from 3.5 to 0.52 Ω and a decrease in capacitive behavior with increasing electrolyte concentration due to diffusion effects.

3.
Nanomaterials (Basel) ; 13(8)2023 Apr 11.
Article in English | MEDLINE | ID: mdl-37110921

ABSTRACT

In this study, we report the effect of intercalation of dimethyl sulfoxide (DMSO) and urea molecules into the interlayer space of Ti3C2Tx MXene on the dielectric properties of poly(vinylidene fluoride) (PVDF)/MXene polymer nanocomposites. MXenes were obtained by a simple hydrothermal method using Ti3AlC2 and a mixture of HCl and KF, and they were then intercalated with DMSO and urea molecules to improve the exfoliation of the layers. Then, nanocomposites based on a PVDF matrix loading of 5-30 wt.% MXene were fabricated by hot pressing. The powders and nanocomposites obtained were characterized by using XRD, FTIR, and SEM. The dielectric properties of the nanocomposites were studied by impedance spectroscopy in the frequency range of 102-106 Hz. As a result, the intercalation of MXene with urea molecules made it possible to increase the permittivity from 22 to 27 and to slightly decrease the dielectric loss tangent at a filler loading of 25 wt.% and a frequency of 1 kHz. The intercalation of MXene with DMSO molecules made it possible to achieve an increase in the permittivity up to 30 at a MXene loading of 25 wt.%, but the dielectric loss tangent was increased to 0.11. A discussion of the possible mechanisms of MXene intercalation influence on the dielectric properties of PVDF/Ti3C2Tx MXene nanocomposites is presented.

4.
Polymers (Basel) ; 14(21)2022 Oct 30.
Article in English | MEDLINE | ID: mdl-36365603

ABSTRACT

New three-phase composites, destined for application as dielectrics in the manufacturing of passive elements of flexible electronics, and based on polymer (PVDF) matrix filled with powdered ceramics of the hollandite-like (KFTO(H)) structure (5.0; 7.5; 15; 30 vol.%) and carbon (MWCNT) additive (0.5; 1.0; 1.5 wt.% regarding the KFTO(H) amount), were obtained and studied by XRD, FTIR and SEM methods. Chemical composition and stoichiometric formula of the ceramic material synthesized by the sol-gel method were confirmed with the XRF analysis data. The influence of the ceramic and carbon fillers on the electrical properties of the obtained composites was investigated using impedance spectroscopy. The optimal combination of permittivity and dielectric loss values at 1 kHz (77.6 and 0.104, respectively) was found for the compositions containing K1.6Fe1.6Ti6.4O16 (30 vol.%) and MWCNTs (1.0 wt.% regarding the amount of ceramic filler).

5.
Polymers (Basel) ; 14(19)2022 Sep 25.
Article in English | MEDLINE | ID: mdl-36235957

ABSTRACT

In this work, polymer matrix composites with the compositions PTFE/KFTO(H) and PTFE/KFTO(H)@CB and with filler volume fractions of 2.5, 5.0, 7.5, 15, and 30% (without and with carbon modification at a content of 2.5 wt.% regarding ceramic material) were produced by calendering and hot pressing and studied using FTIR, SEM, and impedance spectroscopy methods. Ceramic filler (KFTO(H)) was synthesized using the sol−gel Pechini method. Its structure was investigated and confirmed by the XRD method with following Rietveld refinement. The carbon black (CB) modification of KFTO(H) was carried out through the calcination of a mixture of ceramic and carbon materials in an argon atmosphere. Afterwards, composites producing all the components' structures weren't destroyed according to the FTIR results. The effect of carbon additive at a content of 2.5 wt.% relating to ceramic filler in the system of polymer matrix composites was shown, with permittivity increasing up to ε' = 28 with a simultaneous decrease in dielectric loss (tanδ < 0.1) at f = 103 Hz for composites of PTFE/KFTO(H)@CB (30 vol.%).

6.
Polymers (Basel) ; 14(3)2022 Jan 22.
Article in English | MEDLINE | ID: mdl-35160438

ABSTRACT

Polymer matrix composites based on ED-20 epoxy resin, hollandite K1.6(Ni0.8Ti7.2)O16 and carbon nanotubes with a variable content of 0.107; 0.213 and 0.425 vol.% were obtained for the first time. Initial components and composites produced were characterized by XRD, XRA, FTIR, SEM and Raman spectroscopy. The dielectric properties of composite materials were measured by impedance spectroscopy and determined by the volume ratio of the composite components, primarily by the concentration of CNTs. At a CNT content of 0.213 vol.% (before percolation threshold), the maximum synergistic effect of carbon and ceramic fillers on the dielectric properties of a composite based on the epoxy resin was found. Three-phase composites based on epoxy resin, with a maximum permittivity at a minimum dielectric loss tangent, are promising materials for elements of an electronic component base.

7.
Data Brief ; 31: 105770, 2020 Aug.
Article in English | MEDLINE | ID: mdl-32548220

ABSTRACT

Low-grade waste heat harvesting and conversion into electric energy is an important way of renewable energy development and thermo-electrochemical cells are promising devices to solve this problem. In this paper, we report original data on the current density and maximum output power dependents on voltage of the thermos-cells with nickel hollow microspheres electrodes and different electrolyte concentration (from 0.1 to 3.0 mol/l)which exhibit excellent hypothetical Seebeck coefficient and accordingly high open-circuit voltage values at low source temperature. The composition, microstructure and morphology of the hollow nickel microspheres based electrodes are included here. Because of the low cost of nickel based thermo-cells could be commercially feasible for harvesting low-quality thermal energy, in this connection, the raw data of measurements of their properties are given here. The data is related to "High Seebeck coefficient thermo-electrochemical cell using nickel hollow microspheres electrodes", Burmistrov et al., Renewable Energy, 2020 [1].

SELECTION OF CITATIONS
SEARCH DETAIL
...