Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Bioinformation ; 20(4): 327-336, 2024.
Article in English | MEDLINE | ID: mdl-38854763

ABSTRACT

Sterubin (7-O-Methyleriodicytol), a flavanone compound isolated from the leaves of Eriodicyton californicum and Eriodicyton angustifolium, has neuroprotective, anti-inflammatory, and antioxidant properties. Therefore, it is of interest to identify the potential targets for Alzheimer disease using network pharmacology. We report 25 overlapping targets among 100 potential targets of sterubin and 673 known targets of Alzheimer. APP, BACE-1, and AChE were among the ten hub targets enriched in biological processes and pathways relevant to Alzheimer's disease. Subsequent, molecular docking analysis shows that sterubin have optimal binding features with these hub gene targets for further consideration.

2.
Bioinformation ; 20(2): 103-109, 2024.
Article in English | MEDLINE | ID: mdl-38497082

ABSTRACT

Flavonoids are promising therapeutics for the treatment of Alzheimer's disease (AD). Therefore, it is of interest to study the anti-AD potential of 35 flavonoids towards the inhibition of AchE and BACE-1. Hence, the physicochemical, pharmacokinetic parameters, toxicity risk and drug-likeliness of the selected 35 flavonoids were computed. Further, the molecular docking analysis of flavonoids with AChE and BACE-1 were completed. A binding energy of -10.42 kcal/mol Epicatechin gallate, -10.16 kcal/mol sterubin and -10.11 kcal/mol Fisetin was observed with AchE as potential inhibitors. Similarly, Biochainin-A -9.81kcal/mol, Sterubin -8.96 kcal/mol and Epicatechin gallate -7.4 7 kcal/mol showed with BACE-1. Thus, these flavonoids are potential leads for structure-based design of effective anti-Alzheimer's agents.

3.
Int J Biol Macromol ; 256(Pt 2): 128547, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38048926

ABSTRACT

Staphylococcus aureus readily forms biofilms on tissue and indwelling catheter surfaces. These biofilms are resistant to antibiotics. Consequently, effective prevention and treatment strategies against staphylococcal biofilms are actively being pursued over the past two decades. One of the proposed strategies involve the incorporation of antibiotics and antiseptics into catheters, however, a persistent concern regarding the possible emergence of antimicrobial resistance is associated with these medical devices. In this study, we developed two types of silicone catheters: one with Lysostaphin (Lst) adsorbed onto the surface, and the other with Lst functionalized on the surface. To confirm the presence of Lst protein on the catheter surface, we conducted FTIR-ATR and SEM-EDS analysis. Both catheters exhibited hemocompatibility, biocompatibility, and demonstrated antimicrobial and biofilm prevention activities against both methicillin-sensitive and resistant strains of S. aureus. Furthermore, the silicone catheters that were surface-functionalized with Lst showed substantially better and more persistent anti-biofilm effects when compared to the catheters where Lst was surface-adsorbed, both under in vitro static and flow conditions, as well as in vivo in BALB/c mice. These results indicate that surface-functionalized Lst catheters have the potential to serve as a promising new medical device for preventing S. aureus biofilm infections in humans.


Subject(s)
Staphylococcal Infections , Staphylococcus aureus , Animals , Mice , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/therapeutic use , Biofilms , Catheters , Lysostaphin/pharmacology , Silicon/pharmacology , Silicones , Staphylococcal Infections/prevention & control , Staphylococcal Infections/drug therapy
4.
J Control Release ; 355: 474-488, 2023 03.
Article in English | MEDLINE | ID: mdl-36739909

ABSTRACT

Glioblastoma Multiforme (GBM) is one of the challenging tumors to treat as it recurs, almost 100%, even after surgery, radiation, and chemotherapy. In many cases, recurrence happens within 2-3cm depth of the resected tumor margin, indicating the inefficacy of current anti-glioma drugs to penetrate deep into the brain tissue. Here, we report an injectable nanoparticle-gel system, capable of providing deep brain penetration of drug up to 4 cm, releasing in a sustained manner up to >15 days. The system consists of ∼222 nm sized PLGA nanoparticles (NP-222) loaded with an anti-glioma drug, Carmustine (BCNU), and coated with a thick layer of polyethylene glycol (PEG). Upon release of the drug from PLGA core, it will interact with the outer PEG-layer leading to the formation of PEG-BCNU nanocomplexes of size ∼33 nm (BCNU-NC-33), which could penetrate >4 cm deep into the brain tissue compared to the free drug (< 5 mm). In vitro drug release showed sustained release of drug for 15 days by BCNU-NP gel, and enhanced cytotoxicity by BCNU-NC-33 drug-nanocomplexes in glioma cell lines. Ex vivo goat-brain phantom studies showed drug diffusion up to 4 cm in tissue and in vivo brain-diffusion studies showed almost complete coverage within the rat brain (∼1.2 cm), with ∼55% drug retained in the tissue by day-15, compared to only ∼5% for free BCNU. Rat orthotopic glioma studies showed excellent anti-tumor efficacy by BCNU-NP gel compared to free drug, indicating the potential of the gel-system for anti-glioma therapy. In effect, we demonstrate a unique method of sustained release of drug in the brain using larger PLGA nanoparticles acting as a reservoir while deep-penetration of the released drug was achieved by in situ formation of drug-nanocomplexes of size <50 nm which is less than the native pore size of brain tissue (> 100 nm). This method will have a major impact on a challenging field of brain drug delivery.


Subject(s)
Brain Neoplasms , Glioblastoma , Glioma , Nanoparticles , Rats , Animals , Glioblastoma/drug therapy , Glioblastoma/metabolism , Carmustine/therapeutic use , Delayed-Action Preparations/metabolism , Nanomedicine , Brain/metabolism , Glioma/drug therapy , Brain Neoplasms/drug therapy , Brain Neoplasms/metabolism , Polyethylene Glycols/therapeutic use
5.
Article in English | MEDLINE | ID: mdl-35996271

ABSTRACT

BACKGROUND: The mechanisms that cause a patient's blood pressure to rise are diverse. Controlling blood pressure with monotherapy acting through a single pathway may be unachievable. Combining a clinically used medication with herbal medicine can result in an antihypertensive effect that is two to five times greater than monotherapy. METHOD: This study examined the effects of aqueous extracts of large cardamom and ramipril on the redox biology of nitric oxide and vascular reactivity in the isolated aorta incubated with a nitro-L-arginine methyl ester. Molecular docking study was performed to predict the affinity of constituents of large cardamom extracts with the NOX 2 gene. RESULTS: Nitric oxide (NO) levels, disordered antioxidant enzymes (glutathione and catalase), NADPH oxidase and lipid peroxidation were recovered when aqueous extract of large cardamom and ramipril were combined. A gradual increase in the percentage relaxation of acetylcholine in phenylephrine pre-contracted aorta indicates that the combination therapy prevents endothelial damage. The molecular docking study reveals the important phytoconstituents present in the large cardamom that can effectively bind with the NADPH oxidase for its antioxidant activity. Consculsion: According to our findings, it was evidenced that the large cardamom extract's vasoprotective action was mostly related to its ability to restore endothelial redox biology by suppressing NADPH oxidase activity. Our findings suggest that ramipril's direct impact on the eNOS/NO system, along with the antioxidant properties of AELC, could have a synergetic benefit in the treatment of hypertension, as well as lessen ramipril's existing side effects.

SELECTION OF CITATIONS
SEARCH DETAIL
...