Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 152
Filter
1.
Cureus ; 16(4): e58536, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38765344

ABSTRACT

Introduction Diabetes mellitus (DM) is a global health issue with 50 million diabetics currently residing in India. Hyperglycemia causes tissue damage due to mitochondrial overproduction of reactive oxygen species. Sodium-glucose cotransporter-2 (SGLT2) inhibitors (SGLT2i) have shown a decrease in oxidative stress by either amelioration of free-radical generation or potentiation of cellular antioxidative capacity in preclinical studies. However, there is a paucity of published clinical studies. Hence, this study was undertaken to evaluate the effect of co-administration of SGLT2i with other drugs on oxidative stress in type 2 DM (T2DM) patients. Methods A prospective, parallel, open-label study in T2DM patients attending endocrinology OPD was conducted for a period of 12 months. At the clinician's discretion, patients were grouped as SGLT2i as an add-on to standard drugs vs standard drugs alone. Blood samples were collected at baseline and at the end of 12 weeks to estimate malondialdehyde (MDA), nitric oxide (NO), and glutathione (GSH) levels. Secondary parameters - glycemic indices and lipid profile - were estimated every four weeks. Results A total of 32 patients were enrolled in the study (16 per group). There was a significant decrease in MDA (p < 0.05) and NO (p < 0.01) and a highly significant increase in GSH (p < 0.001) at 12 weeks from baseline in the SGLT2i group. A reduction in fasting blood sugar (FBS) and post-prandial blood sugar (PPBS) and a 0.56% difference in HbA1c were also noted in the SGLT2i group. Significant lowering of low-density lipoprotein (LDL, p < 0.05) and elevation in HDL levels (p < 0.05) from baseline was seen in the SGLT2i group.  Conclusion Co-administration of SGLT2i with antidiabetic drugs demonstrated a significant effect in improving oxidative stress biomarkers and glycemic and lipid profiles among T2DM patients.

2.
Nat Commun ; 15(1): 765, 2024 Jan 26.
Article in English | MEDLINE | ID: mdl-38278794

ABSTRACT

There is still incomplete knowledge of which Mycobacterium tuberculosis (Mtb) antigens can trigger distinct T cell responses at different stages of infection. Here, a proteome-wide screen of 20,610 Mtb-derived peptides in 21 patients mid-treatment for active tuberculosis (ATB) reveals IFNγ-specific T cell responses against 137 unique epitopes. Of these, 16% are recognized by two or more participants and predominantly derived from cell wall and cell processes antigens. There is differential recognition of antigens, including TB vaccine candidate antigens, between ATB participants and interferon-gamma release assay (IGRA + /-) individuals. We developed an ATB-specific peptide pool (ATB116) consisting of epitopes exclusively recognized by ATB participants. This pool can distinguish patients with pulmonary ATB from IGRA + /- individuals from various geographical locations, with a sensitivity of over 60% and a specificity exceeding 80%. This proteome-wide screen of T cell reactivity identified infection stage-specific epitopes and antigens for potential use in diagnostics and measuring Mtb-specific immune responses.


Subject(s)
Latent Tuberculosis , Mycobacterium tuberculosis , Tuberculosis , Humans , Epitopes, T-Lymphocyte , Proteome , Interferon-gamma , Tuberculosis/microbiology , Latent Tuberculosis/diagnosis , Peptides , Antigens, Bacterial
3.
Sci Rep ; 13(1): 22554, 2023 12 18.
Article in English | MEDLINE | ID: mdl-38110534

ABSTRACT

Diagnostic limitations challenge management of clinically indistinguishable acute infectious illness globally. Gene expression classification models show great promise distinguishing causes of fever. We generated transcriptional data for a 294-participant (USA, Sri Lanka) discovery cohort with adjudicated viral or bacterial infections of diverse etiology or non-infectious disease mimics. We then derived and cross-validated gene expression classifiers including: 1) a single model to distinguish bacterial vs. viral (Global Fever-Bacterial/Viral [GF-B/V]) and 2) a two-model system to discriminate bacterial and viral in the context of noninfection (Global Fever-Bacterial/Viral/Non-infectious [GF-B/V/N]). We then translated to a multiplex RT-PCR assay and independent validation involved 101 participants (USA, Sri Lanka, Australia, Cambodia, Tanzania). The GF-B/V model discriminated bacterial from viral infection in the discovery cohort an area under the receiver operator curve (AUROC) of 0.93. Validation in an independent cohort demonstrated the GF-B/V model had an AUROC of 0.84 (95% CI 0.76-0.90) with overall accuracy of 81.6% (95% CI 72.7-88.5). Performance did not vary with age, demographics, or site. Host transcriptional response diagnostics distinguish bacterial and viral illness across global sites with diverse endemic pathogens.


Subject(s)
Bacterial Infections , Virus Diseases , Humans , Virus Diseases/diagnosis , Virus Diseases/genetics , Biomarkers , Bacterial Infections/diagnosis , Bacterial Infections/genetics , Cambodia , Australia
4.
Am J Cardiol ; 197: 13-23, 2023 06 15.
Article in English | MEDLINE | ID: mdl-37218417

ABSTRACT

Anti-inflammatory drugs reduce the risk of cardiovascular events in patients with coronary artery disease (CAD), but less is known about the relation between inflammation and outcomes in patients with cerebrovascular disease (CeVD), peripheral artery disease (PAD), and abdominal aortic aneurysm (AAA). This study assessed the association between C-reactive protein (CRP) and clinical outcomes in patients with CAD (n = 4,517), CeVD (n = 2,154), PAD (n = 1,154), and AAA (n = 424) from the prospective Utrecht Cardiovascular Cohort-Second Manifestations of ARTerial disease study. The primary outcome was recurrent cardiovascular disease (CVD), defined as myocardial infarction, ischemic stroke, or cardiovascular death. Secondary outcomes were major adverse limb events and all-cause mortality. Associations between baseline CRP and outcomes were assessed using Cox proportional hazards models adjusted for age, sex, smoking, diabetes mellitus, body mass index, systolic blood pressure, non-high-density lipoprotein cholesterol, and glomerular filtration rate. Results were stratified by CVD location. During a median follow-up of 9.5 years, 1,877 recurrent CVD events, 887 major adverse limb events, and 2,341 deaths were observed. CRP was independently associated with recurrent CVD (hazard ratio [HR] per 1 mg/L 1.08, 95% confidence interval [CI] 1.05 to 1.10), and all secondary outcomes. Compared with the first quintile of CRP, HRs for recurrent CVD were 1.60 (95% CI 1.35 to 1.89) for the last quintile ≤10 mg/L and 1.90 (95% CI 1.58 to 2.29) for the subgroup with CRP >10 mg/L. CRP was associated with recurrent CVD in patients with CAD (HR per 1 mg/L 1.08, 95% CI 1.04 to 1.11), CeVD (HR 1.05, 95% CI 1.01 to 1.10), PAD (HR 1.08, 95% CI 1.03 to 1.13), and AAA (HR 1.08, 95% CI 1.01 to 1.15). The association between CRP and all-cause mortality was stronger for patients with CAD (HR 1.13, 95% CI 1.09 to 1.16) than for patients with other CVD locations (HRs 1.06 to 1.08; p = 0.002). Associations remained consistent beyond 15 years after the CRP measurement. In conclusion, greater CRP is independently associated with an increased risk of recurrent CVD and mortality, irrespective of previous CVD location.


Subject(s)
Cardiovascular Diseases , Cerebrovascular Disorders , Coronary Artery Disease , Peripheral Arterial Disease , Humans , C-Reactive Protein/metabolism , Cardiovascular Diseases/mortality , Cerebrovascular Disorders/mortality , Coronary Artery Disease/mortality , Peripheral Arterial Disease/mortality , Prospective Studies , Risk Factors
5.
bioRxiv ; 2023 Apr 13.
Article in English | MEDLINE | ID: mdl-37090558

ABSTRACT

Tuberculosis caused by Mycobacterium tuberculosis is one of the leading causes of death from a single infectious agent. Identifying dominant epitopes and comparing their reactivity in different tuberculosis (TB) infection states can help design diagnostics and vaccines. We performed a proteome-wide screen of 20,610 Mtb derived peptides in 21 Active TB (ATB) patients 3-4 months post-diagnosis of pulmonary TB (mid-treatment) using an IFNγ and IL-17 Fluorospot assay. Responses were mediated exclusively by IFNγ and identified a total of 137 unique epitopes, with each patient recognizing, on average, 8 individual epitopes and 22 epitopes (16%) recognized by 2 or more participants. Responses were predominantly directed against antigens part of the cell wall and cell processes category. Testing 517 peptides spanning TB vaccine candidates and ESAT-6 and CFP10 antigens also revealed differential recognition between ATB participants mid-treatment and healthy IGRA+ participants of several vaccine antigens. An ATB-specific peptide pool consisting of epitopes exclusively recognized by participants mid-treatment, allowed distinguishing participants with active pulmonary TB from healthy interferon-gamma release assay (IGRA)+/- participants from diverse geographical locations. Analysis of longitudinal samples indicated decreased reactivity during treatment for pulmonary TB. Together, these results show that a proteome-wide screen of T cell reactivity identifies epitopes and antigens that are differentially recognized depending on the Mtb infection stage. These have potential use in developing diagnostics and vaccine candidates and measuring correlates of protection.

6.
J Am Coll Cardiol ; 81(16): 1646-1658, 2023 04 25.
Article in English | MEDLINE | ID: mdl-37076219

ABSTRACT

Triglyceride-rich lipoproteins (TRLs) are a source of residual risk in patients with atherosclerotic cardiovascular disease, and are indirectly correlated with triglyceride (TG) levels. Previous clinical trials studying TG-lowering therapies have either failed to reduce major adverse cardiovascular events or shown no linkage of TG reduction with event reduction, particularly when these agents were tested on a background of statin therapy. Limitations in trial design may explain this lack of efficacy. With the advent of new RNA-silencing therapies in the TG metabolism pathway, there is renewed focus on reducing TRLs for major adverse cardiovascular event reduction. In this context, the pathophysiology of TRLs, pharmacological effects of TRL-lowering therapies, and optimal design of cardiovascular outcomes trials are major considerations.


Subject(s)
Atherosclerosis , Cardiovascular Diseases , Humans , Clinical Trials as Topic , Lipoproteins/metabolism , Triglycerides/metabolism , Atherosclerosis/drug therapy , Cardiovascular Diseases/prevention & control
7.
JACC Basic Transl Sci ; 8(2): 141-151, 2023 Feb.
Article in English | MEDLINE | ID: mdl-36908662

ABSTRACT

Inflammation is a key determinant of cardiovascular outcomes, but its role in heart failure is uncertain. In patients with cardiometabolic disease enrolled in the prospective, multicenter ancillary study of CIRT (Cardiovascular Inflammation Reduction Trial), CIRT-CFR (Coronary Flow Reserve to Assess Cardiovascular Inflammation), impaired coronary flow reserve was independently associated with increased inflammation and myocardial strain despite well-controlled lipid, glycemic, and hemodynamic profiles. Inflammation modified the relationship between CFR and myocardial strain, disrupting the association between cardiac blood flow and function. Future studies are needed to investigate whether an early inflammation-mediated reduction in CFR capturing microvascular ischemia may lead to heart failure in patients with cardiometabolic disease. (Cardiovascular Inflammation Reduction Trial [CIRT]; NCT01594333; Coronary Flow Reserve to Assess Cardiovascular Inflammation [CIRT-CFR]; NCT02786134).

8.
Lancet ; 401(10384): 1293-1301, 2023 04 15.
Article in English | MEDLINE | ID: mdl-36893777

ABSTRACT

BACKGROUND: Inflammation and hyperlipidaemia jointly contribute to atherothrombotic disease. However, when people are treated with intensive statin therapy, the relative contributions of inflammation and hyperlipidaemia to the risk of future cardiovascular events might change, which has implications for the choice of adjunctive cardiovascular therapeutics. We aimed to evaluate the relative importance of high-sensitivity C-reactive protein (CRP) and low-density lipoprotein cholesterol (LDLC) as determinants of risk for major adverse cardiovascular events, cardiovascular death, and all-cause-death among patients receiving statins. METHODS: We did a collaborative analysis of patients with-or at high risk of-atherosclerotic disease, who were receiving contemporary statins and were participants in the multinational PROMINENT (NCT03071692), REDUCE-IT (NCT01492361), or STRENGTH (NCT02104817) trials. Quartiles of increasing baseline high-sensitivity CRP (a biomarker of residual inflammatory risk) and of increasing baseline LDLC (a biomarker of residual cholesterol risk) were assessed as predictors of future major adverse cardiovascular events, cardiovascular death, and all-cause death. Hazard ratios (HRs) for cardiovascular events and deaths were calculated across quartiles of high-sensitivity CRP and LDLC in analyses adjusted for age, gender, BMI, smoking status, blood pressure, previous history of cardiovascular disease, and randomised treatment group assignment. FINDINGS: 31 245 patients were included in the analysis from the PROMINENT (n=9988), REDUCE-IT (n=8179), and STRENGTH (n=13 078) trials. The observed ranges for baseline high-sensitivity CRP and LDLC, and the relationships of each biomarker to subsequent cardiovascular event rates, were almost identical in the three trials. Residual inflammatory risk was significantly associated with incident major adverse cardiovascular events (highest high-sensitivity CRP quartile vs lowest high-sensitivity CRP quartile, adjusted HR 1·31, 95% CI 1·20-1·43; p<0·0001), cardiovascular mortality (2·68, 2·22-3·23; p<0·0001), and all-cause mortality (2·42, 2·12-2·77; p<0·0001). By contrast, the relationship of residual cholesterol risk was neutral for major adverse cardiovascular events (highest LDLC quartile vs lowest LDLC quartile, adjusted HR 1·07, 95% CI 0·98-1·17; p=0·11), and of low magnitude for cardiovascular death (1·27, 1·07-1·50; p=0·0086) and all-cause death (1·16, 1·03-1·32; p=0·025). INTERPRETATION: Among patients receiving contemporary statins, inflammation assessed by high-sensitivity CRP was a stronger predictor for risk of future cardiovascular events and death than cholesterol assessed by LDLC. These data have implications for the selection of adjunctive treatments beyond statin therapy and suggest that combined use of aggressive lipid-lowering and inflammation-inhibiting therapies might be needed to further reduce atherosclerotic risk. FUNDING: Kowa Research Institute, Amarin, AstraZeneca.


Subject(s)
Atherosclerosis , Cardiovascular Diseases , Hydroxymethylglutaryl-CoA Reductase Inhibitors , Hyperlipidemias , Humans , Hydroxymethylglutaryl-CoA Reductase Inhibitors/adverse effects , Cholesterol , Hyperlipidemias/chemically induced , C-Reactive Protein/metabolism , Inflammation/drug therapy , Biomarkers
9.
Front Plant Sci ; 14: 1280251, 2023.
Article in English | MEDLINE | ID: mdl-38269137

ABSTRACT

Introduction: With climate change, frequent exposure of bioenergy and food crops, specifically soybean (Glycine max L.), to low-temperature episodes is a major obstacle in maintaining sustainable plant growth at early growth stages. Silicon (Si) is a quasi-essential nutrient that can help to improve stress tolerance; however, how Si and a combination of cold stress episodes influence plant growth, plant physiology, and microbiome diversity has yet to be fully discovered. Methods: The soybean plants were exposed to cold stress (8-10°C) with or without applying Si, and the different plant organs (shoot and root) and rhizospheric soil were subjected to microbiome analysis. The plant growth, physiology, and gene expression analysis of plant defenses during stress and Si were investigated. Results and discussion: We showed that cold stress significantly retarded soybean plants' growth and biomass, whereas, Si-treated plants showed ameliorated negative impacts on plant growth at early seedling stages. The beneficial effects of Si were also evident from significantly reduced antioxidant activities - suggesting lower cold-induced oxidative stress. Interestingly, Si also downregulated critical genes of the abscisic acid pathway and osmotic regulation (9-cis-epoxy carotenoid dioxygenase and dehydration-responsive element binding protein) during cold stress. Si positively influenced alpha and beta diversities of bacterial and fungal microbiomes with or without cold stress. Results showed significant variation in microbiome composition in the rhizosphere (root and soil) and phyllosphere (shoot) in Si-treated plants with or without cold stress exposures. Among microbiome phyla, Proteobacteria, Bacteroidota, and Ascomycota were significantly more abundant in Si treatments in cold stress than in control conditions. For the core microbiome, we identified 179 taxa, including 88 unique bacterial genera in which Edaphobacter, Haliangium, and Streptomyces were highly abundant. Enhanced extracellular enzyme activities in the cold and Si+cold treatments, specifically phosphatase and glucosidases, also reflected the microbiome abundance. In conclusion, this work elucidates cold-mediated changes in microbiome diversity and plant growth, including the positive impact Si can have on cold tolerance at early soybean growth stages - a step toward understanding crop productivity and stress tolerance.

10.
J Lipid Res ; 63(8): 100242, 2022 08.
Article in English | MEDLINE | ID: mdl-35724702

ABSTRACT

Elevated circulating lipoprotein (a) [Lp(a)] is associated with an increased risk of first and recurrent cardiovascular events; however, the effect of baseline Lp(a) levels on long-term outcomes in an elderly population is not well understood. The current single-center prospective study evaluated the association of Lp(a) levels with incident acute coronary syndrome to identify populations at risk of future events. Lp(a) concentration was assessed in 755 individuals (mean age of 71.9 years) within the community and followed for up to 8 years (median time to event, 4.5 years; interquartile range, 2.5-6.5 years). Participants with clinically relevant high levels of Lp(a) (>50 mg/dl) had an increased absolute incidence rate of ASC of 2.00 (95% CI, 1.0041) over 8 years (P = 0.04). Moreover, Kaplan-Meier cumulative event analyses demonstrated the risk of ASC increased when compared with patients with low (<30 mg/dl) and elevated (30-50 mg/dl) levels of Lp(a) over 8 years (Gray's test; P = 0.16). Within analyses adjusted for age and BMI, the hazard ratio was 2.04 (95% CI, 1.0-4.2; P = 0.05) in the high versus low Lp(a) groups. Overall, this study adds support for recent guidelines recommending a one-time measurement of Lp(a) levels in cardiovascular risk assessment to identify subpopulations at risk and underscores the potential utility of this marker even among older individuals at a time when potent Lp(a)-lowering agents are undergoing evaluation for clinical use.


Subject(s)
Lipoprotein(a) , Aged , Biomarkers , Humans , Male , Prospective Studies , Risk Assessment , Risk Factors
12.
Vaccines (Basel) ; 10(4)2022 Apr 14.
Article in English | MEDLINE | ID: mdl-35455361

ABSTRACT

While several lines of evidence suggest a protective role of T cells against disease associated with Dengue virus (DENV) infection, their potential contribution to immunopathology in the acute phase of DENV infection remains controversial, and it has been hypothesized that the more severe form of the disease (dengue hemorrhagic fever, DHF) is associated with altered T cell responses. To address this question, we determined the transcriptomic profiles of DENV-specific CD8+ T cells in a cohort of 40 hospitalized dengue patients with either a milder form of the disease (dengue fever, DF) or a more severe disease form (dengue hemorrhagic fever, DHF). We found multiple transcriptomic signatures, one associated with DENV-specific interferon-gamma responding cells and two other gene signatures, one specifically associated with the acute phase and the other with the early convalescent phase. Additionally, we found no differences in quantity and quality of DENV-specific CD8+ T cells based on disease severity. Taken together with previous findings that did not detect altered DENV-specific CD4 T cell responses, the current analysis argues against alteration in DENV-specific T cell responses as being a correlate of immunopathology.

13.
J Radiol Prot ; 42(2)2022 Feb 23.
Article in English | MEDLINE | ID: mdl-35130534

ABSTRACT

Radioprotectors are agents that have the potential to act against radiation damage to cells. These are equally invaluable in radiation protection, both in intentional and unintentional radiation exposure. It is however, complex to use a universal radioprotector that could be beneficial in diverse contexts such as in radiotherapy, nuclear accidents, and space travel, as each of these circumstances have unique requirements. In a clinical setting such as in radiotherapy, a radioprotector is used to increase the efficacy of cancer treatment. The protective agent must act against radiation damage selectively in normal healthy cells while enhancing the radiation damage imparted on cancer cells. In the context of radiotherapy, plant-based compounds offer a more reliable solution over synthetic ones as the former are less expensive, less toxic, possess synergistic phytochemical activity, and are environmentally friendly. Phytochemicals with both radioprotective and anticancer properties may enhance the treatment efficacy by two-fold. Hence, plant based radioprotective agents offer a promising field to progress forward, and to expand the boundaries of radiation protection. This review is an account on radioprotective properties of phytochemicals and complications encountered in the development of the ideal radioprotector to be used as an adjunct in radiotherapy.


Subject(s)
Radiation Exposure , Radiation Protection , Radiation-Protective Agents , Plants , Radiation-Protective Agents/therapeutic use
14.
Cancer Treat Res Commun ; 31: 100523, 2022.
Article in English | MEDLINE | ID: mdl-35101832

ABSTRACT

BACKGROUND: The natural flora of healthy mucosa offer protection to the host. The loss of this barrier during radiotherapy enhances insults from physical, chemical and microbial agents. METHODOLOGY: A randomized, double blind, placebo-controlled, parallel study on forty-six patients who underwent radiotherapy for head and neck cancers was undertaken. Patients were randomized either to standard treatment plus Bacillus clausii UBBC07 or standard treatment plus placebo. Bacillus clausii UBBC07 was given as an oral suspension of 2 billion spores twice every day for 30 days or until completion of total fractions of radiation. Grading of the mucositis was performed using CTCAE v.4.03 severity scale. The time taken for the appearance, resolution and severity of mucositis was evaluated. RESULTS: There was a significant increase (p < 0.01) in median time for the onset of mucositis i.e., 10 days in test and 8 days in control groups respectively. The median time for remission was found to be 12 days in test and 14 days in the control group (p < 0.05). Grade IV mucositis was observed in no patients in test group and 2 patients in the control group (p < 0.05). No adverse events attributed to the Bacillus clausii were seen. Bacillus clausii UBBC07 therapy delayed the onset, decreased the time to remission and displayed strong impact on suppressing the occurrence of high-grade mucositis amongst the test group. CONCLUSIONS: This study provides a positive trend that probiotics like Bacillus clausii UBBC07 spores could act as a tool to ameliorate oral mucositis.


Subject(s)
Bacillus clausii , Head and Neck Neoplasms , Mucositis , Stomatitis , Head and Neck Neoplasms/radiotherapy , Humans , Mucositis/etiology , Spores, Bacterial , Stomatitis/drug therapy , Stomatitis/therapy
15.
J Biol Chem ; 298(2): 101546, 2022 02.
Article in English | MEDLINE | ID: mdl-34999117

ABSTRACT

Nonsense mutations, which occur in ∼11% of patients with genetic disorders, introduce premature termination codons (PTCs) that lead to truncated proteins and promote nonsense-mediated mRNA decay. Aminoglycosides such as G418 permit PTC readthrough and so may be used to address this problem. However, their effects are variable between patients, making clinical use of aminoglycosides challenging. In this study, we tested whether TRPC nonselective cation channels contribute to the variable PTC readthrough effect of aminoglycosides by controlling their cellular uptake. Indeed, a recently reported selective TRPC5 inhibitor, AC1903, consistently suppressed G418 uptake and G418-induced PTC readthrough in the DMS-114 cancer cell line and junctional epidermolysis bullosa (JEB) patient-derived keratinocytes. Interestingly, the effect of AC1903 in DMS-114 cells was mimicked by nonselective TRPC inhibitors, but not by well-characterized inhibitors of TRPC1/4/5 (Pico145, GFB-8438) or TRPC3/6/7 (SAR7334), suggesting that AC1903 may work through additional or undefined targets. Indeed, in our experiments, AC1903 inhibited multiple TRPC channels including TRPC3, TRPC4, TRPC5, TRPC6, TRPC4-C1, and TRPC5-C1, as well as endogenous TRPC1:C4 channels in A498 renal cancer cells, all with low micromolar IC50 values (1.8-18 µM). We also show that AC1903 inhibited TRPV4 channels, but had weak or no effects on TRPV1 and no effect on the nonselective cation channel PIEZO1. Our study reveals that AC1903 has previously unrecognized targets, which need to be considered when interpreting results from experiments with this compound. In addition, our data strengthen the hypothesis that nonselective calcium channels are involved in aminoglycoside uptake.


Subject(s)
Aminoglycosides , Codon, Nonsense , Indazoles , TRPC Cation Channels , Aminoglycosides/pharmacology , Codon, Nonsense/drug effects , Humans , Indazoles/pharmacology , Protein Synthesis Inhibitors , TRPC Cation Channels/antagonists & inhibitors , TRPC Cation Channels/genetics , TRPC Cation Channels/metabolism
16.
Cell Chem Biol ; 29(5): 870-882.e11, 2022 05 19.
Article in English | MEDLINE | ID: mdl-34520745

ABSTRACT

The pathogen Mycobacterium tuberculosis (Mtb) evades the innate immune system by interfering with autophagy and phagosomal maturation in macrophages, and, as a result, small molecule stimulation of autophagy represents a host-directed therapeutics (HDTs) approach for treatment of tuberculosis (TB). Here we show the marine natural product clionamines activate autophagy and inhibit Mtb survival in macrophages. A yeast chemical-genetics approach identified Pik1 as target protein of the clionamines. Biotinylated clionamine B pulled down Pik1 from yeast cell lysates and a clionamine analog inhibited phosphatidyl 4-phosphate (PI4P) production in yeast Golgi membranes. Chemical-genetic profiles of clionamines and cationic amphiphilic drugs (CADs) are closely related, linking the clionamine mode of action to co-localization with PI4P in a vesicular compartment. Small interfering RNA (siRNA) knockdown of PI4KB, a human homolog of Pik1, inhibited the survival of Mtb in macrophages, identifying PI4KB as an unexploited molecular target for efforts to develop HDT drugs for treatment of TB.


Subject(s)
Mycobacterium tuberculosis , Saccharomyces cerevisiae Proteins , Tuberculosis , 1-Phosphatidylinositol 4-Kinase/metabolism , Autophagy , Humans , Macrophages/metabolism , Saccharomyces cerevisiae , Saccharomyces cerevisiae Proteins/metabolism , Tuberculosis/drug therapy
17.
Front Vet Sci ; 9: 1045088, 2022.
Article in English | MEDLINE | ID: mdl-36733425

ABSTRACT

Burkholderia pseudomallei is the causative agent of the potentially fatal infection, melioidosis. This study provides the first evidence for the presence of B. pseudomallei in soil and water in Sri Lanka. Targeted sampling of soil and natural water sources was done between November 2019 and October 2020 over eight field visits encompassing the neighborhood of 28 culture and/or antibody-positive melioidosis patients in northwestern, western and southern Sri Lanka. A total of eight environmental isolates of B. pseudomallei (BPs-env1 to BPs-env8) were cultured from 116 soil and 117 natural water samples collected from 72 locations. The presence of B. pseudomallei in soil and natural water in these areas poses a risk of melioidosis for populations cultivating crops in such soils and using untreated water from these sources for drinking, bathing, and other domestic purposes. Identifying sites positive for B. pseudomallei may help to mitigate risk by raising public awareness of contaminated environmental sources and allowing soil and water remediation.

18.
Front Immunol ; 13: 1087010, 2022.
Article in English | MEDLINE | ID: mdl-36713384

ABSTRACT

Introduction: Previous studies suggest that monocytes are an important contributor to tuberculosis (TB)-specific immune signatures in blood. Methods: Here, we carried out comprehensive single-cell profiling of monocytes in paired blood samples of active TB (ATB) patients at diagnosis and mid-treatment, and healthy controls. Results: At diagnosis, ATB patients displayed increased monocyte-to-lymphocyte ratio, increased frequency of CD14+CD16- and intermediate CD14+CD16+ monocytes, and upregulation of interferon signaling genes that significantly overlapped with previously reported blood TB signatures in both CD14+ subsets. In this cohort, we identified additional transcriptomic and functional changes in intermediate CD14+CD16+ monocytes, such as the upregulation of inflammatory and MHC-II genes, and increased capacity to activate T cells, reflecting overall increased activation in this population. Single-cell transcriptomics revealed that distinct subsets of intermediate CD14+CD16+ monocytes were responsible for each gene signature, indicating significant functional heterogeneity within this population. Finally, we observed that changes in CD14+ monocytes were transient, as they were no longer observed in the same ATB patients mid-treatment, suggesting they are associated with disease resolution. Discussion: Together, our study demonstrates for the first time that both intermediate and classical monocytes individually contribute to blood immune signatures of ATB and identifies novel subsets and associated gene signatures that may hold disease relevance.


Subject(s)
Monocytes , Tuberculosis , Humans , Lymphocytes , Gene Expression Profiling , T-Lymphocytes
19.
PLoS Negl Trop Dis ; 15(12): e0009917, 2021 12.
Article in English | MEDLINE | ID: mdl-34851950

ABSTRACT

BACKGROUND: Melioidosis is a potentially fatal infectious disease caused by Burkholderia pseudomallei and the disease is endemic in Southeast Asia and Northern Australia. It has been confirmed as endemic in Sri Lanka. Genomic epidemiology of B. pseudomallei in Sri Lanka is largely unexplored. This study aims to determine the biogeography and genetic diversity of clinical isolates of B. pseudomallei and the phylogenetic and evolutionary relationship of Sri Lankan sequence types (STs) to those found in other endemic regions of Southeast Asia and Oceania. METHODS: The distribution of variably present genetic markers [Burkholderia intracellular motility A (bimA) gene variants bimABP/bimABM, filamentous hemagglutinin 3 (fhaB3), Yersinia-like fimbrial (YLF) and B. thailandensis-like flagellum and chemotaxis (BTFC) gene clusters and lipopolysaccharide O-antigen type A (LPS type A)] was examined among 310 strains. Multilocus sequence typing (MLST) was done for 84 clinical isolates. The phylogenetic and evolutionary relationship of Sri Lankan STs within Sri Lanka and in relation to those found in other endemic regions of Southeast Asia and Oceania were studied using e BURST, PHYLOViZ and minimum evolutionary analysis. RESULTS: The Sri Lankan B. pseudomallei population contained a large proportion of the rare BTFC clade (14.5%) and bimABM allele variant (18.5%) with differential geographic distribution. Genotypes fhaB3 and LPSA were found in 80% and 86% respectively. This study reported 43 STs (including 22 novel). e-BURST analysis which include all Sri Lankan STs (71) resulted in four groups, with a large clonal group (group 1) having 46 STs, and 17 singletons. ST1137 was the commonest ST. Several STs were shared with India, Bangladesh and Cambodia. CONCLUSION: This study demonstrates the usefulness of high-resolution molecular typing to locate isolates within the broad geographical boundaries of B. pseudomallei at a global level and reveals that Sri Lankan isolates are intermediate between Southeast Asia and Oceania.


Subject(s)
Burkholderia pseudomallei/genetics , Genetic Variation , Melioidosis/epidemiology , Melioidosis/microbiology , Biological Evolution , DNA, Bacterial , Female , Genotype , Humans , Male , Multilocus Sequence Typing , Phylogeography , Sri Lanka/epidemiology
20.
PLoS Negl Trop Dis ; 15(12): e0010091, 2021 12.
Article in English | MEDLINE | ID: mdl-34962920

ABSTRACT

BACKGROUND: Healthcare systems in dengue-endemic countries are often overburdened due to the high number of patients hospitalized according to dengue management guidelines. We systematically evaluated clinical outcomes in a large cohort of patients hospitalized with acute dengue to support triaging of patients to ambulatory versus inpatient management in the future. METHODS/PRINCIPAL FINDINGS: From June 2017- December 2018, we conducted surveillance among children and adults with fever within the prior 7 days who were hospitalized at the largest tertiary-care (1,800 bed) hospital in the Southern Province, Sri Lanka. Patients who developed platelet count ≤100,000/µL (threshold for hospital admission in Sri Lanka) and who met at least two clinical criteria consistent with dengue were eligible for enrollment. We confirmed acute dengue by testing sera collected at enrollment for dengue NS1 antigen or IgM antibodies. We defined primary outcomes as per the 1997 and 2009 World Health Organization (WHO) classification criteria: dengue hemorrhagic fever (DHF; WHO 1997), dengue shock syndrome (DSS; WHO 1997), and severe dengue (WHO 2009). Overall, 1064 patients were confirmed as having acute dengue: 318 (17.4%) by NS1 rapid antigen testing and 746 (40.7%) by IgM antibody testing. Of these 1064 patients, 994 (93.4%) were adults ≥18 years and 704 (66.2%) were male. The majority (56, 80%) of children and more than half of adults (544, 54.7%) developed DHF during hospitalization, while 6 (8.6%) children and 22 (2.2%) adults developed DSS. Overall, 10 (14.3%) children and 113 (11.4%) adults developed severe dengue. A total of 2 (0.2%) patients died during hospitalization. CONCLUSIONS: One-half of patients hospitalized with acute dengue progressed to develop DHF and a very small number developed DSS or severe dengue. Developing an algorithm for triaging patients to ambulatory versus inpatient management should be the future goal to optimize utilization of healthcare resources in dengue-endemic countries.


Subject(s)
Severe Dengue/epidemiology , Severe Dengue/therapy , Adolescent , Adult , Antibodies, Viral/blood , Case Management , Child , Cohort Studies , Cost of Illness , Dengue Virus/genetics , Dengue Virus/immunology , Dengue Virus/isolation & purification , Female , Hospitalization , Humans , Male , Outpatients/statistics & numerical data , Platelet Count , Severe Dengue/blood , Severe Dengue/virology , Sri Lanka/epidemiology , Tertiary Healthcare/statistics & numerical data , Treatment Outcome , Young Adult
SELECTION OF CITATIONS
SEARCH DETAIL
...