Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Preprint in English | medRxiv | ID: ppmedrxiv-22272732

ABSTRACT

The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is known to present with pulmonary and extra-pulmonary organ complications. In comparison with the 2009 pandemic (pH1N1), SARS-CoV-2 infection is likely to lead to more severe disease, with multi-organ effects, including cardiovascular disease. SARS-CoV-2 has been associated with acute and long-term cardiovascular disease, but the molecular changes govern this remain unknown. In this study, we investigated the landscape of cardiac tissues collected at rapid autopsy from SARS-CoV-2, pH1N1, and control patients using targeted spatial transcriptomics approaches. Although SARS-CoV-2 was not detected in cardiac tissue, host transcriptomics showed upregulation of genes associated with DNA damage and repair, heat shock, and M1-like macrophage infiltration in the cardiac tissues of COVID-19 patients. The DNA damage present in the SARS-CoV-2 patient samples, were further confirmed by {gamma}-H2Ax immunohistochemistry. In comparison, pH1N1 showed upregulation of Interferon-stimulated genes (ISGs), in particular interferon and complement pathways, when compared with COVID-19 patients. These data demonstrate the emergence of distinct transcriptomic profiles in cardiac tissues of SARS-CoV-2 and pH1N1 influenza infection supporting the need for a greater understanding of the effects on extra-pulmonary organs, including the cardiovascular system of COVID-19 patients, to delineate the immunopathobiology of SARS-CoV-2 infection, and long term impact on health.

2.
Preprint in English | medRxiv | ID: ppmedrxiv-21265555

ABSTRACT

BackgroundRobust biomarkers that predict disease outcomes amongst COVID-19 patients are necessary for both patient triage and resource prioritisation. Numerous candidate biomarkers have been proposed for COVID-19. However, at present, there is no consensus on the best diagnostic approach to predict outcomes in infected patients. Moreover, it is not clear whether such tools would apply to other potentially pandemic pathogens and therefore of use as stockpile for future pandemic preparedness. MethodsWe conducted a multi-cohort observational study to investigate the biology and the prognostic role of interferon alpha-inducible protein 27 (IFI27) in COVID-19 patients. FindingsWe show that IFI27 is expressed in the respiratory tract of COVID-19 patients and elevated IFI27 expression is associated with the presence of a high viral load. We further demonstrate that systemic host response, as measured by blood IFI27 expression, is associated with COVID-19 severity. For clinical outcome prediction (e.g. respiratory failure), IFI27 expression displays a high positive (0.83) and negative (0.95) predictive value, outperforming all other known predictors of COVID-19 severity. Furthermore, IFI27 is upregulated in the blood of infected patients in response to other respiratory viruses. For example, in the pandemic H1N1/09 swine influenza virus infection, IFI27-like genes were highly upregulated in the blood samples of severely infected patients. InterpretationThese data suggest that prognostic biomarkers targeting the family of IFI27 genes could potentially supplement conventional diagnostic tools in future virus pandemics, independent of whether such pandemics are caused by a coronavirus, an influenza virus or another as yet-to-be discovered respiratory virus. Research in contextO_ST_ABSEvidence before this studyC_ST_ABSWe searched the scientific literature using PubMed to identify studies that used the IFI27 biomarker to predict outcomes in COVID-19 patients. We used the search terms "IFI27", "COVID-19, "gene expression" and "outcome prediction". We did not identify any study that investigated the role of IFI27 biomarker in outcome prediction. Although ten studies were identified using the general terms of "gene expression" and "COVID-19", IFI27 was only mentioned in passing as one of the identified genes. All these studies addressed the broader question of the host response to COVID-19; none focused solely on using IFI27 to improve the risk stratification of infected patients in a pandemic. Added value of this studyHere, we present the findings of a multi-cohort study of the IFI27 biomarker in COVID-19 patients. Our findings show that the host response, as reflected by blood IFI27 gene expression, accurately predicts COVID-19 disease progression (positive and negative predictive values; 0.83 and 0.95, respectively), outperforming age, comorbidity, C-reactive protein and all other known risk factors. The strong association of IFI27 with disease severity occurs not only in SARS-CoV-2 infection, but also in other respiratory viruses with pandemic potential, such as the influenza virus. These findings suggest that host response biomarkers, such as IFI27, could help identify high-risk COVID-19 patients - those who are more likely to develop infection complications - and therefore may help improve patient triage in a pandemic. Implications of all the available evidenceThis is the first systemic study of the clinical role of IFI27 in the current COVID-19 pandemic and its possible future application in other respiratory virus pandemics. The findings not only could help improve the current management of COVID-19 patients but may also improve future pandemic preparedness.

3.
Preprint in English | medRxiv | ID: ppmedrxiv-20225557

ABSTRACT

The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) that emerged in late 2019 has spread globally, causing a pandemic of respiratory illness designated coronavirus disease 2019 (COVID-19). Robust blood biomarkers that reflect tissue damage are urgently needed to better stratify and triage infected patients. Here, we use spatial transcriptomics to generate an in-depth picture of the pulmonary transcriptional landscape of COVID-19 (10 patients), pandemic H1N1 (pH1N1) influenza (5) and uninfected control patients (4). Host transcriptomics showed a significant upregulation of genes associated with inflammation, type I interferon production, coagulation and angiogenesis in the lungs of COVID-19 patients compared to non-infected controls. SARS-CoV-2 was non-uniformly distributed in lungs with few areas of high viral load and these were largely only associated with an increased type I interferon response. A very limited number of genes were differentially expressed between the lungs of influenza and COVID-19 patients. Specific interferon-associated genes (including IFI27) were identified as candidate novel biomarkers for COVID-19 differentiating this COVID-19 from influenza. Collectively, these data demonstrate that spatial transcriptomics is a powerful tool to identify novel gene signatures within tissues, offering new insights into the pathogenesis of SARS-COV-2 to aid in patient triage and treatment.

SELECTION OF CITATIONS
SEARCH DETAIL
...