Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Phys Rev Lett ; 128(23): 231802, 2022 Jun 10.
Article in English | MEDLINE | ID: mdl-35749181

ABSTRACT

Uncovering the nature of dark matter is one of the most important goals of particle physics. Light bosonic particles, such as the dark photon, are well-motivated candidates: they are generally long-lived, weakly interacting, and naturally produced in the early universe. In this work, we report on Light A^{'} Multilayer Periodic Optical SNSPD Target, a proof-of-concept experiment searching for dark photon dark matter in the eV mass range, via coherent absorption in a multilayer dielectric haloscope. Using a superconducting nanowire single-photon detector (SNSPD), we achieve efficient photon detection with a dark count rate of ∼6×10^{-6} counts/s. We find no evidence for dark photon dark matter in the mass range of ∼0.7-0.8 eV with kinetic mixing ε≳10^{-12}, improving existing limits in ε by up to a factor of 2. With future improvements to SNSPDs, our architecture could probe significant new parameter space for dark photon and axion dark matter in the meV to 10 eV mass range.

2.
Phys Rev Lett ; 116(3): 031102, 2016 Jan 22.
Article in English | MEDLINE | ID: mdl-26849581

ABSTRACT

The fine-structure constant and the electron mass in string theory are determined by the values of scalar fields called moduli. If the dark matter takes on the form of such a light modulus, it oscillates with a frequency equal to its mass and an amplitude determined by the local dark-matter density. This translates into an oscillation of the size of a solid that can be observed by resonant-mass antennas. Existing and planned experiments, combined with a dedicated resonant-mass detector proposed in this Letter, can probe dark-matter moduli with frequencies between 1 kHz and 1 GHz, with much better sensitivity than searches for fifth forces.

3.
Phys Rev Lett ; 113(16): 161801, 2014 Oct 17.
Article in English | MEDLINE | ID: mdl-25361250

ABSTRACT

We describe a method based on precision magnetometry that can extend the search for axion-mediated spin-dependent forces by several orders of magnitude. By combining techniques used in nuclear magnetic resonance and short-distance tests of gravity, our approach can substantially improve upon current experimental limits set by astrophysics, and probe deep into the theoretically interesting regime for the Peccei-Quinn (PQ) axion. Our method is sensitive to PQ axion decay constants between 10(9) and 10(12) GeV or axion masses between 10(-6) and 10(-3) eV, independent of the cosmic axion abundance.

4.
Phys Rev Lett ; 110(7): 071105, 2013 Feb 15.
Article in English | MEDLINE | ID: mdl-25166367

ABSTRACT

We propose a tunable resonant sensor to detect gravitational waves in the frequency range of 50-300 kHz using optically trapped and cooled dielectric microspheres or microdisks. The technique we describe can exceed the sensitivity of laser-based gravitational wave observatories in this frequency range, using an instrument of only a few percent of their size. Such a device extends the search volume for gravitational wave sources above 100 kHz by 1 to 3 orders of magnitude, and could detect monochromatic gravitational radiation from the annihilation of QCD axions in the cloud they form around stellar mass black holes within our galaxy due to the superradiance effect.


Subject(s)
Gravitation , Models, Theoretical
5.
Phys Rev Lett ; 108(8): 081602, 2012 Feb 24.
Article in English | MEDLINE | ID: mdl-22463515

ABSTRACT

We study the graviton phenomenology of TeV little string theory by exploiting its holographic gravity dual five-dimensional theory. This dual corresponds to a linear dilaton background with a large bulk that constrains the standard model fields on the boundary of space. The linear dilaton geometry produces a unique Kaluza-Klein graviton spectrum that exhibits a ~TeV mass gap followed by a near continuum of narrow resonances that are separated from each other by only ~30 GeV. Resonant production of these particles at the LHC is the signature of this framework that distinguishes it from large extra dimensions, where the Kaluza-Klein states are almost a continuum with no mass gap, and warped models, where the states are separated by a TeV.

6.
Phys Rev Lett ; 100(12): 120407, 2008 Mar 28.
Article in English | MEDLINE | ID: mdl-18517846

ABSTRACT

We propose an atom-interferometry experiment based on the scalar Aharonov-Bohm effect which detects an atom charge at the 10{-28}e level, and improves the current laboratory limits by 8 orders of magnitude. This setup independently probes neutron charges down to 10{-28}e, 7 orders of magnitude below current bounds.

SELECTION OF CITATIONS
SEARCH DETAIL
...