Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Plants (Basel) ; 12(13)2023 Jun 29.
Article in English | MEDLINE | ID: mdl-37447045

ABSTRACT

In the present study, the diaheliotropic leaf movement pattern of Malva sylvestris in relation to the impact of low temperature is presented. Seasonal measurements of movement characteristics along with important aspects of plant function, such as chlorophyll content, water potential, PSII photochemistry, and phenological parameters were performed on plants in their natural environment. During the study period, low winter temperatures and a 10-day freezing event gave insights into the plant's response to harsh environmental conditions and the effect of the latter on leaf movement profile. Plant growth was significantly inhibited during low-temperature periods (leaf shedding) and the photosynthetic performance was seriously depressed, as judged by in vivo chlorophyll a fluorescence. Additionally, the diaheliotropic leaf movement pattern was arrested. Temperature rise in March triggered new leaf burst and expansion, enhancement of the photosynthetic performance, and the recovery of the diaheliotropic movement. The daily and seasonal profiles of the water potential were synergistically shaped by leaf movement and climatic conditions. We conclude that diaheliotropism of M. sylvestris is a dynamic process that coordinates with the prevailing temperatures in ecosystems like the studied one, reaching a full arrest under near-zero temperatures to protect the photosynthetic apparatus from over-excitation and prevent photoinhibition.

2.
PLoS One ; 8(6): e66887, 2013.
Article in English | MEDLINE | ID: mdl-23840546

ABSTRACT

Fibrosis is a complex and multifactorial process, affecting the structure and compromising the function of several organs. Among those, renal fibrosis is an important pathological change, eventually leading to renal failure. Proteomic analysis of the renal parenchyma in the well-established rat model of unilateral ureteral obstruction (UUO model) suggested that transgelin was up-regulated during the development of fibrosis. Transgelin up-regulation was confirmed both at the protein and at the mRNA level. It was observed that at early stages of fibrosis transgelin was mainly expressed in the interstitial compartment and, more specifically, in cells surrounding the glomeruli. Subsequently, it was confirmed that transgelin expressing cells were activated fibroblasts, based on their extensive co-expression of α-SMA and their complete lack of co-distribution with markers of other cell types (endothelial, epithelial and cells of the immune system). These periglomerular fibroblasts exhibited staining for transgelin mainly cytoplasmic but occasionally nuclear as well. In addition, transgelin expression in periglomerular fibroblasts was absent in renal fibrosis developed in a hypertensive model, compared to the UUO model. Promoter analysis indicated that there are several conserved motifs for transcription factor binding. Among those, Kruppel-like factor 6 was found to be up-regulated in transgelin positive periglomerular activated fibroblasts, suggesting a possible involvement in the mechanism of transgelin up-regulation. These data strongly suggest that transgelin is up-regulated in the obstructive nephropathy and could be used as a novel marker for renal fibrosis in the future.


Subject(s)
Kidney Diseases/complications , Microfilament Proteins/genetics , Microfilament Proteins/metabolism , Muscle Proteins/genetics , Muscle Proteins/metabolism , Up-Regulation , Ureteral Obstruction/genetics , Ureteral Obstruction/metabolism , Animals , Biomarkers/metabolism , Fibrosis , Intracellular Space/metabolism , Kidney/pathology , Male , Promoter Regions, Genetic/genetics , Protein Transport , Rats , Rats, Wistar , Ureteral Obstruction/complications , Ureteral Obstruction/pathology
SELECTION OF CITATIONS
SEARCH DETAIL
...