Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Language
Publication year range
1.
Chem Sci ; 11(41): 11179-11188, 2020 Sep 11.
Article in English | MEDLINE | ID: mdl-34094358

ABSTRACT

An efficient strategy for designing charge-transfer complexes using coinage metal cyclic trinuclear complexes (CTCs) is described herein. Due to opposite quadrupolar electrostatic contributions from metal ions and ligand substituents, [Au(µ-Pz-(i-C3H7)2)]3·[Ag(µ-Tz-(n-C3F7)2)]3 (Pz = pyrazolate, Tz = triazolate) has been obtained and its structure verified by single crystal X-ray diffraction - representing the 1st crystallographically-verified stacked adduct of monovalent coinage metal CTCs. Abundant supramolecular interactions with aggregate covalent bonding strength arise from a combination of M-M' (Au → Ag), metal-π, π-π interactions and hydrogen bonding in this charge-transfer complex, according to density functional theory analyses, yielding a computed binding energy of 66 kcal mol-1 between the two trimer moieties - a large value for intermolecular interactions between adjacent d10 centres (nearly doubling the value for a recently-claimed Au(i) → Cu(i) polar-covalent bond: Proc. Natl. Acad. Sci. U.S.A., 2017, 114, E5042) - which becomes 87 kcal mol-1 with benzene stacking. Surprisingly, DFT analysis suggests that: (a) some other literature precedents should have attained a stacked product akin to the one herein, with similar or even higher binding energy; and (b) a high overall intertrimer bonding energy by inferior electrostatic assistance, underscoring genuine orbital overlap between M and M' frontier molecular orbitals in such polar-covalent M-M' bonds in this family of molecules. The Au → Ag bonding is reminiscent of classical Werner-type coordinate-covalent bonds such as H3N: → Ag in [Ag(NH3)2]+, as demonstrated herein quantitatively. Solid-state and molecular modeling illustrate electron flow from the π-basic gold trimer to the π-acidic silver trimer with augmented contributions from ligand-to-ligand' (LL'CT) and metal-to-ligand (MLCT) charge transfer.

2.
Nanomaterials (Basel) ; 9(4)2019 Apr 11.
Article in English | MEDLINE | ID: mdl-30978992

ABSTRACT

A simple photochemical method for making conjoined bi-metallic gold-silver (Au/Ag) nanotwins, a new breed of nanoparticles (NPs), is developed. To the best of our knowledge, the photochemical method resulted in distinct, conjoined, bimetallic nanotwins that are different from any well-established alloyed or core-shell nanostructures in the literature. The conjoined Au-Ag NPs possessed surface plasmon resonance (SPR) properties of both metals. The bimetallic nanostructures possessing distinctive optical properties of both metals were obtained using Au NPs as seeds in the first step, followed by the addition of a silver precursor as feed in the second step during a photochemical irradiation process. In the first step, small, isotropic or large, anisotropic Au NPs are generated by photoinduced reduction within a biocompatible chitosan (CS) polymer. In the second step, a silver precursor (AgNO3) is added as the feed to the AuNPs seed, followed by irradiation of the solution in the ice-bath. The entire photochemical irradiation process resulting in the formation of bimetallic Au-AgNPs did not involve any other reducing agents or stabilizing agents other than the CS polymer stabilizer. The small, conjoined Au-Ag bi-metallic NPs exhibited SPR with peak maxima centering at ~400 nm and ~550 nm, whereas the large conjoined nanoparticles exhibited SPR with peak maxima centering at ~400 nm, 550 nm, and 680 nm, characteristic of both gold and silver surface plasmons in solution. The tunability in the SPR and size of the bimetallic NPs were obtained by varying the reaction time and other reaction parameters, resulting in average sizes between 30 and 100 nm. The SPR, size, distribution, and elemental composition of the bi-metallic NPs were characterized using UV-Vis absorption, electron microscopy, and energy dispersive X-ray spectroscopy (EDS) studies.

3.
ACS Omega ; 3(11): 15510-15518, 2018 Nov 30.
Article in English | MEDLINE | ID: mdl-31458207

ABSTRACT

A novel luminescent azo-linked polymer (ALP) has been constructed from 1,3,6,8-tetra(4-aminophenyl)pyrene using a copper(I)-catalyzed oxidative homocoupling reaction. The polymer displays high porosity with a Brunauer-Emmett-Teller surface area of 1259 m2 g-1 and narrow pore size distribution (1.06 nm) and is able to take up a significant amount of CO2 (2.89 mmol g-1) at 298 K and 1.00 bar with a high isosteric heat of adsorption of 27.5 kJ mol-1. Selectivity studies applying the ideal adsorbed solution theory revealed that the novel polymer has moderately good selectivities for CO2/N2 (55.1) and CO2/CH4 (10.9). Furthermore, the ALP shows fluorescence quenching in the presence of Hg2+, Pb2+, Tl+, and Al3+ ions. Compared with these ions, the ALP showed no sensitivity to light metal ions such as Na+, K+, and Ca2+ in ethanol-water solution, clearly indicating the high selectivity of the ALP toward heavy metal ions. The exceptional physiochemical stability, high porosity, and strong luminescence make this polymer an excellent candidate as a fluorescent chemical sensor for the detection of heavy metal ions.

4.
Chem Sci ; 8(5): 3989-4000, 2017 May 01.
Article in English | MEDLINE | ID: mdl-28553541

ABSTRACT

FMOF-1 is a flexible, superhydrophobic metal-organic framework with a network of channels and side pockets decorated with -CF3 groups. CO2 adsorption isotherms measured between 278 and 313 K and up to 55 bar reveal a maximum uptake of ca. 6.16 mol kg-1 (11.0 mol L-1) and unusual isotherm shapes at the higher temperatures, suggesting framework expansion. We used neutron diffraction and molecular simulations to investigate the framework expansion behaviour and the accessibility of the small pockets to N2, O2, and CO2. Neutron diffraction in situ experiments on the crystalline powder show that CO2 molecules are favourably adsorbed at three distinct adsorption sites in the large channels of FMOF-1 and cannot access the small pockets in FMOF-1 at 290 K and oversaturated pressure at 61 bar. Stepped adsorption isotherms for N2 and O2 at 77 K can be explained by combining Monte Carlo simulations in several different crystal structures of FMOF-1 obtained from neutron and X-ray diffraction under different conditions. A similar analysis is successful for CO2 adsorption at 278 and 283 K up to ca. 30 bar; however, at 298 K and pressures above 30 bar, the results suggest even more substantial expansion of the FMOF-1 framework. The measured contact angle for water on an FMOF-1 pellet is 158°, demonstrating superhydrophobicity. Simulations and adsorption measurements also show that FMOF-1 is hydrophobic and water is not adsorbed in FMOF-1 at room temperature. Simulated mixture isotherms of CO2 in the presence of 80% relative humidity predict that water does not influence the CO2 adsorption in FMOF-1, suggesting that hydrophobic MOFs could hold promise for CO2 capture from humid gas streams.

5.
Angew Chem Int Ed Engl ; 54(16): 4842-6, 2015 Apr 13.
Article in English | MEDLINE | ID: mdl-25735258

ABSTRACT

The trinuclear triangle-shaped system [tris{3,5-bis(heptafluoropropyl)-1,2,4-triazolatosilver(I)}] (1) and the multi-armed square-shaped metalloporphyrin PtOEP or the free porphyrin base H2OEP serve as excellent octopus hosts (OEP=2,3,7,8,12,13,17,18-octaethyl-21H,23H-porphine). Coupling of the fluorous/organic molecular octopi 1 and H2OEP or PtOEP by strong quadrupole-quadrupole and metal-π interactions affords the supramolecular assemblies [1⋅PtOEP] or [1⋅H2OEP] (2 a), which feature nanoscopic cavities surrounding the upper triangular and lower square cores. The fluorous/organic biphasic configuration of [1⋅PtOEP] leads to an increase in the phosphorescence of PtOEP under ambient conditions. Guest molecules can be included in the biphasic double-octopus assembly in three different site-selective modes.

7.
Nat Commun ; 5: 5723, 2014 Dec 04.
Article in English | MEDLINE | ID: mdl-25474702

ABSTRACT

Metal-organic frameworks with high stability have been pursued for many years due to the sustainability requirement for practical applications. However, researchers have had great difficulty synthesizing chemically ultra-stable, highly porous metal-organic frameworks in the form of crystalline solids, especially as single crystals. Here we present a kinetically tuned dimensional augmentation synthetic route for the preparation of highly crystalline and extremely robust metal-organic frameworks with a preserved metal cluster core. Through this versatile synthetic route, we obtain large single crystals of 34 different iron-containing metal-organic frameworks. Among them, PCN-250(Fe2Co) exhibits high volumetric uptake of hydrogen and methane, and is also stable in water and aqueous solutions with a wide range of pH values.

8.
J Am Chem Soc ; 136(23): 8269-76, 2014 Jun 11.
Article in English | MEDLINE | ID: mdl-24819882

ABSTRACT

We demonstrate that rigidifying the structure of fluorescent linkers by structurally constraining them in metal-organic frameworks (MOFs) to control their conformation effectively tunes the fluorescence energy and enhances the quantum yield. Thus, a new tetraphenylethylene-based zirconium MOF exhibits a deep-blue fluorescent emission at 470 nm with a unity quantum yield (99.9 ± 0.5%) under Ar, representing ca. 3600 cm(-1) blue shift and doubled radiative decay efficiency vs the linker precursor. An anomalous increase in the fluorescence lifetime and relative intensity takes place upon heating the solid MOF from cryogenic to ambient temperatures. The origin of these unusual photoluminescence properties is attributed to twisted linker conformation, intramolecular hindrance, and framework rigidity.

9.
J Am Chem Soc ; 135(34): 12615-26, 2013 Aug 28.
Article in English | MEDLINE | ID: mdl-23805867

ABSTRACT

Water cluster formation and methane adsorption within a hydrophobic porous metal organic framework is studied by in situ vibrational spectroscopy, adsorption isotherms, and first-principle DFT calculations (using vdW-DF). Specifically, the formation and stability of H2O clusters in the hydrophobic cavities of a fluorinated metal-organic framework (FMOF-1) is examined. Although the isotherms of water show no measurable uptake (see Yang et al. J. Am. Chem. Soc. 2011 , 133 , 18094 ), the large dipole of the water internal modes makes it possible to detect low water concentrations using IR spectroscopy in pores in the vicinity of the surface of the solid framework. The results indicate that, even in the low pressure regime (100 mTorr to 3 Torr), water molecules preferentially occupy the large cavities, in which hydrogen bonding and wall hydrophobicity foster water cluster formation. We identify the formation of pentameric water clusters at pressures lower than 3 Torr and larger clusters beyond that pressure. The binding energy of the water species to the walls is negligible, as suggested by DFT computational findings and corroborated by IR absorption data. Consequently, intermolecular hydrogen bonding dominates, enhancing water cluster stability as the size of the cluster increases. The formation of water clusters with negligible perturbation from the host may allow a quantitative comparison with experimental environmental studies on larger clusters that are in low concentrations in the atmosphere. The stability of the water clusters was studied as a function of pressure reduction and in the presence of methane gas. Methane adsorption isotherms for activated FMOF-1 attained volumetric adsorption capacities ranging from 67 V(STP)/V at 288 K and 31 bar to 133 V(STP)/V at 173 K and 5 bar, with an isosteric heat of adsorption of ca. 14 kJ/mol in the high temperature range (288-318 K). Overall, the experimental and computational data suggest high preferential uptake for methane gas relative to water vapor within FMOF-1 pores with ease of desorption and high framework stability under operative temperature and moisture conditions.


Subject(s)
Methane/chemistry , Organometallic Compounds/chemistry , Water/chemistry , Adsorption , Hydrophobic and Hydrophilic Interactions , Particle Size , Porosity , Quantum Theory , Surface Properties
SELECTION OF CITATIONS
SEARCH DETAIL
...