Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
bioRxiv ; 2023 Jul 01.
Article in English | MEDLINE | ID: mdl-37214942

ABSTRACT

During Hedgehog (Hh) signal transduction in development and disease, the atypical G protein-coupled receptor (GPCR) SMOOTHENED (SMO) communicates with GLI transcription factors by binding the protein kinase A catalytic subunit (PKA-C) and physically blocking its enzymatic activity. Here we show that GPCR kinase 2 (GRK2) orchestrates this process during endogenous Hh pathway activation in the primary cilium. Upon SMO activation, GRK2 rapidly relocalizes from the ciliary base to the shaft, triggering SMO phosphorylation and PKA-C interaction. Reconstitution studies reveal that GRK2 phosphorylation enables active SMO to bind PKA-C directly. Lastly, the SMO-GRK2-PKA pathway underlies Hh signal transduction in a range of cellular and in vivo models. Thus, GRK2 phosphorylation of ciliary SMO, and the ensuing PKA-C binding and inactivation, are critical initiating events for the intracellular steps in Hh signaling. More broadly, our study suggests an expanded role for GRKs in enabling direct GPCR interactions with diverse intracellular effectors.

2.
Nat Struct Mol Biol ; 29(10): 990-999, 2022 10.
Article in English | MEDLINE | ID: mdl-36202993

ABSTRACT

The Hedgehog (Hh) cascade is central to development, tissue homeostasis and cancer. A pivotal step in Hh signal transduction is the activation of glioma-associated (GLI) transcription factors by the atypical G protein-coupled receptor (GPCR) SMOOTHENED (SMO). How SMO activates GLI remains unclear. Here we show that SMO uses a decoy substrate sequence to physically block the active site of the cAMP-dependent protein kinase (PKA) catalytic subunit (PKA-C) and extinguish its enzymatic activity. As a result, GLI is released from phosphorylation-induced inhibition. Using a combination of in vitro, cellular and organismal models, we demonstrate that interfering with SMO-PKA pseudosubstrate interactions prevents Hh signal transduction. The mechanism uncovered echoes one used by the Wnt cascade, revealing an unexpected similarity in how these two essential developmental and cancer pathways signal intracellularly. More broadly, our findings define a mode of GPCR-PKA communication that may be harnessed by a range of membrane receptors and kinases.


Subject(s)
Antineoplastic Agents , Drosophila Proteins , Cyclic AMP-Dependent Protein Kinases/metabolism , Drosophila Proteins/metabolism , Hedgehog Proteins/metabolism , Intracellular Signaling Peptides and Proteins , Receptors, G-Protein-Coupled/genetics , Receptors, G-Protein-Coupled/metabolism , Signal Transduction/physiology , Smoothened Receptor/genetics , Smoothened Receptor/metabolism , Transcription Factors/metabolism
3.
PLoS Biol ; 19(4): e3001191, 2021 04.
Article in English | MEDLINE | ID: mdl-33886552

ABSTRACT

The Hedgehog (Hh) pathway is essential for organ development, homeostasis, and regeneration. Dysfunction of this cascade drives several cancers. To control expression of pathway target genes, the G protein-coupled receptor (GPCR) Smoothened (SMO) activates glioma-associated (GLI) transcription factors via an unknown mechanism. Here, we show that, rather than conforming to traditional GPCR signaling paradigms, SMO activates GLI by binding and sequestering protein kinase A (PKA) catalytic subunits at the membrane. This sequestration, triggered by GPCR kinase (GRK)-mediated phosphorylation of SMO intracellular domains, prevents PKA from phosphorylating soluble substrates, releasing GLI from PKA-mediated inhibition. Our work provides a mechanism directly linking Hh signal transduction at the membrane to GLI transcription in the nucleus. This process is more fundamentally similar between species than prevailing hypotheses suggest. The mechanism described here may apply broadly to other GPCR- and PKA-containing cascades in diverse areas of biology.


Subject(s)
Cyclic AMP-Dependent Protein Kinase Catalytic Subunits/antagonists & inhibitors , Hedgehog Proteins/metabolism , Smoothened Receptor/physiology , Animals , Animals, Genetically Modified , Catalytic Domain/genetics , Cells, Cultured , Cyclic AMP-Dependent Protein Kinase Catalytic Subunits/chemistry , Cyclic AMP-Dependent Protein Kinase Catalytic Subunits/metabolism , Embryo, Nonmammalian , HEK293 Cells , Hedgehog Proteins/genetics , Humans , Mice , Protein Interaction Domains and Motifs/genetics , Signal Transduction/genetics , Smoothened Receptor/metabolism , Zebrafish
SELECTION OF CITATIONS
SEARCH DETAIL
...