Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Environ Toxicol Chem ; 41(4): 1042-1053, 2022 04.
Article in English | MEDLINE | ID: mdl-35060643

ABSTRACT

Beekeepers report significant honey bee deaths during and after almond bloom. These losses pose a major problem for the California almond industry because of its dependence on honey bees as pollinators. The present study aimed to determine if combinations of pesticides applied during almond bloom during daylight hours were a possible explanation for these losses. In this study we aimed to mimic the spray application route of exposure to pesticides using a Potter Spray Tower to treat adult honey bees with commonly encountered pesticides and pesticide combinations at multiples of the maximum recommended field application rates. Tested insecticides included Altacor® and Intrepid®, and tested fungicides included Tilt®, Pristine®, Luna Sensation®, and Vangard®. Synergistic toxicity was observed when the fungicide Tilt (active ingredient propiconazole) was applied with the insecticide Altacor (chlorantraniliprole), though neither caused significant mortality when applied independently. The study also looked at the effect of adding a spray adjuvant, Dyne-Amic®, to pesticide mixtures. Dyne-Amic was toxic to honey bees at concentrations above the maximum recommended field application rate, and toxicity was increased when combined with the fungicide Pristine (pyraclostrobin and boscalid). Addition of Dyne-Amic also increased toxicity of the Tilt and Altacor combination. These results suggest that application of Altacor and Tilt in combination with an adjuvant at the recommended field application rates could cause mortality in adult honey bees. These findings highlight a potential explanation for honey bee losses around almond bloom, emphasize that the safety of spray adjuvants to bees should not be assumed, and provide support for recommendations to protect bees from pesticides through application at night when bees are not foraging. Environ Toxicol Chem 2022;41:1042-1053. © 2022 The Authors. Environmental Toxicology and Chemistry published by Wiley Periodicals LLC on behalf of SETAC.


Subject(s)
Fungicides, Industrial , Insecticides , Pesticides , Prunus dulcis , Animals , Bees , Fungicides, Industrial/toxicity , Insecticides/toxicity , Pesticides/toxicity
2.
PLoS One ; 12(8): e0183215, 2017.
Article in English | MEDLINE | ID: mdl-28854259

ABSTRACT

The pallid bat (Antrozous pallidus), a gleaning bat found in the western United States and Mexico, hunts a wide variety of ground-dwelling prey, including scorpions. Anecdotal evidence suggests that the pallid bat is resistant to scorpion venom, but no systematic study has been performed. Here we show with behavioral measures and direct injection of venom that the pallid bat is resistant to venom of the Arizona bark scorpion, Centruroides sculpturatus. Our results show that the pallid bat is stung multiple times during a hunt without any noticeable effect on behavior. In addition, direct injection of venom at mouse LD50 concentrations (1.5 mg/kg) has no effect on bat behavior. At the highest concentration tested (10 mg/kg), three out of four bats showed no effects. One of the four bats showed a transient effect suggesting that additional studies are required to identify potential regional variation in venom tolerance. Scorpion venom is a cocktail of toxins, some of which activate voltage-gated sodium ion channels, causing intense pain. Dorsal root ganglia (DRG) contain nociceptive neurons and are principal targets of scorpion venom toxins. To understand if mutations in specific ion channels contribute to venom resistance, a pallid bat DRG transcriptome was generated. As sodium channels are a major target of scorpion venom, we identified amino acid substitutions present in the pallid bat that may lead to venom resistance. Some of these substitutions are similar to corresponding amino acids in sodium channel isoforms responsible for reduced venom binding activity. The substitution found previously in the grasshopper mouse providing venom resistance to the bark scorpion is not present in the pallid bat, indicating a potentially novel mechanism for venom resistance in the bat that remains to be identified. Taken together, these results indicate that the pallid bat is resistant to venom of the bark scorpion and altered sodium ion channel function may partly underlie such resistance.


Subject(s)
Amino Acid Substitution , Chiroptera/genetics , Disease Resistance/genetics , Scorpion Venoms/toxicity , Scorpions/chemistry , Voltage-Gated Sodium Channel Blockers/toxicity , Voltage-Gated Sodium Channels/genetics , Amino Acid Sequence , Animals , Chiroptera/immunology , Feeding Behavior/physiology , Ganglia, Spinal/cytology , Ganglia, Spinal/drug effects , Ganglia, Spinal/metabolism , Gene Expression , Mutation , Predatory Behavior/physiology , Scorpion Stings/genetics , Scorpion Stings/immunology , Scorpion Stings/prevention & control , Scorpion Venoms/isolation & purification , Scorpions/pathogenicity , Scorpions/physiology , Sequence Alignment , Sequence Homology, Amino Acid , Transcriptome , Voltage-Gated Sodium Channel Blockers/isolation & purification , Voltage-Gated Sodium Channels/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...