Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 21
Filter
Add more filters










Publication year range
1.
J Water Health ; 16(1): 49-56, 2018 Feb.
Article in English | MEDLINE | ID: mdl-29424718

ABSTRACT

Water quality and socioeconomics influence caries in populations. This study broadens previous studies on how caries is associated with fluoride and calcium in drinking water and with family income by quantifying the combined effect of the three independent variables. The effects of calcium and fluoride can be described as independent effects of the two ions or, alternatively, in the form of saturation with respect to fluorite (CaF2). A general linear model describes this relationship with high significance and the model confirms the important protective effect of calcium and fluoride, independently against caries. From the model, the relative importance of fluoride and calcium to protect against caries is quantified. The relationship between caries and family income is also highly significant. It is illustrated how the linear model can be applied in planning and analyzing drinking water softening in relation to caries.


Subject(s)
Calcium/administration & dosage , Dental Caries/epidemiology , Dental Caries/prevention & control , Drinking Water/chemistry , Fluoridation , Income/statistics & numerical data , Adolescent , Denmark/epidemiology , Female , Humans , Male
2.
Water Res ; 81: 269-78, 2015 Sep 15.
Article in English | MEDLINE | ID: mdl-26074190

ABSTRACT

Nine specific compounds identified to migrate from polyethylene (PE) and cross-linked polyethylene (PEX) to drinking water were investigated for their degradation in drinking water. Three sample types were studied: field samples (collected at consumer taps), PEX pipe water extractions, and water samples spiked with target compounds. Four compounds were quantified in field samples at concentrations of 0.15-8.0 µg/L. During PEX pipe water extraction 0.42 ± 0.20 mg NVOC/L was released and five compounds quantified (0.5-6.1 µg/L). The degradation of these compounds was evaluated in PEX-pipe water extractions and spiked samples. 4-ethylphenol was degraded within 22 days. Eight compounds were, however, only partially degradable under abiotic and biotic conditions within the timeframe of the experiments (2-4 weeks). Neither inhibition nor co-metabolism was observed in the presence of acetate or PEX pipe derived NVOC. Furthermore, the degradation in drinking water from four different locations with three different water works was similar. In conclusion, eight out of the nine compounds studied would - if being released from the pipes - reach consumers with only minor concentration decrease during water distribution.


Subject(s)
Drinking Water/chemistry , Organic Chemicals/analysis , Water Pollutants, Chemical/analysis , Denmark , Polyethylene/chemistry , Time Factors , Water Quality , Water Supply
3.
Sci Total Environ ; 499: 257-64, 2014 Nov 15.
Article in English | MEDLINE | ID: mdl-25194903

ABSTRACT

Contamination by the herbicide mecoprop (MCPP) was detected in groundwater abstraction wells at Kerteminde Waterworks in concentrations up to 0.08µg/L. MCPP was removed to below detection limit in a simple treatment line where anaerobic groundwater was aerated and subsequently filtered by primary and secondary rapid sand filters. Water quality parameters were measured throughout the waterworks, and they behaved as designed for. MCPP was removed in secondary rapid sand filters--removal was the greatest in the sand filters in the filter line with the highest contact time (63 min). In these secondary sand filters, MCPP concentration decreased from 0.037 µg/L to below the detection limit of 0.01 µg/L. MCPP was removed continuously at different filter depths (0.80 m). Additionally, biodegradation, mineralisation and adsorption were investigated in the laboratory in order to elucidate removal mechanisms in the full-scale system. Therefore, microcosms were set up with filter sand, water and (14)C-labelled MCPP at an initial concentration of 0.2 µg/L. After 24 h, 79-86% of the initial concentration of MCPP was removed. Sorption removed 11-15%, while the remaining part was removed by microbial processes, leading to a complete mineralisation of 13-18%. Microbial removal in the filter sand was similar at different depths of the rapid sand filter, while the amount of MCPP which adsorbed to the filter sand after 48 h decreased with depth from 21% of the initial MCPP in the top layer to 7% in the bottom layer. It was concluded that MCPP was removed in secondary rapid sand filters at Kerteminde Waterworks, to which both adsorption and microbial degradation contributed.


Subject(s)
2-Methyl-4-chlorophenoxyacetic Acid/analogs & derivatives , Groundwater/chemistry , Water Pollutants, Chemical/analysis , Water Purification/methods , 2-Methyl-4-chlorophenoxyacetic Acid/analysis , Filtration , Silicon Dioxide/chemistry , Waste Disposal, Fluid/methods
4.
Chemosphere ; 117: 271-7, 2014 Dec.
Article in English | MEDLINE | ID: mdl-25113993

ABSTRACT

Anaerobic ammonium oxidation (anammox) is a cost-effective process to treat high-strength nitrogenous wastewater. Even without organic carbon input, the effluent contains bioproducts from autotrophic and heterotrophic bacteria. In this work, excitation-emission matrix (EEM) fluorescence spectroscopy was used to characterize the effluent dissolved organic matter (EfOM) from an anammox reactor treating synthetic wastewater. Two dominant EEM components were identified as humic acid-like (component 1) and protein-like (component 2) substances with excitation/emission peaks at <240, 355, 420/464 nm and <240, 280, 330/346 nm, respectively. The presence of both compounds in the effluent was tracked during an activity recovery period (nitrogen load increased from 0.2 to 1.3 kg Nm(-3)d(-1)). The effluent concentration of both components increased during this period, indicating correlation between production and bacterial activity. The dynamics of these bioproducts during both substrate consumption and starvation phases was analyzed in batch experiments. Component 1 was only formed during substrate consumption in a rate proportional to ammonium removal and was considered an up-take associated product characteristic of anammox activity. The results show that the composition of the EfOM was qualitatively and quantitatively influenced by process performance. Monitoring the EfOM could, therefore, offer a useful approach to assess anammox process performance and must be further explored.


Subject(s)
Ammonia/metabolism , Humic Substances/analysis , Waste Disposal, Fluid/methods , Water Pollutants, Chemical/metabolism , Anaerobiosis , Biomass , Bioreactors , Factor Analysis, Statistical , Nitrogen/analysis , Oxidation-Reduction , Spectrometry, Fluorescence , Wastewater/analysis , Wastewater/microbiology
5.
Int J Environ Res Public Health ; 10(3): 845-55, 2013 Mar 01.
Article in English | MEDLINE | ID: mdl-23455399

ABSTRACT

Individuals of the water louse, Asellus aquaticus, enter drinking water distribution systems in temperate parts of the world, where they establish breeding populations. We analysed populations of surface water A. aquaticus from two ponds for associated faecal indicator bacteria and assessed the risk of A. aquaticus transporting bacteria into distribution systems. Concentrations of up to two E. coli and five total coliforms·mL-1 were measured in the water and 200 E. coli and >240 total coliforms·mL-1 in the sediments of the investigated ponds. Concentrations of A. aquaticus associated bacteria never exceeded three E. coli and six total coliforms·A. aquaticus-1. During exposure to high concentrations of coliforms, concentrations reached 350 coliforms·A. aquaticus-1. A. aquaticus associated E. coli were only detected as long as E. coli were present in the water and sediment. The calculated probability of exceeding drinking water guideline values in non-disinfected systems by intrusion of A. aquaticus was low. Only in scenarios with narrow pipes and low flows, did total coliforms exceed guideline values, implying that the probability of detection by routine monitoring is also low. The study expands the knowledge base for evaluating incidents with presence of coliform indicators in drinking water by showing that intruding A. aquaticus were not important carriers of E. coli or other coliform bacteria even when emerging from faecally contaminated waters.


Subject(s)
Enterobacteriaceae/isolation & purification , Isopoda/microbiology , Water Microbiology , Animals , Bacterial Load , Denmark , Drinking Water/microbiology , Environmental Monitoring , Water Pollutants/isolation & purification
6.
Water Res ; 46(16): 5279-86, 2012 Oct 15.
Article in English | MEDLINE | ID: mdl-22884244

ABSTRACT

Water lice, Asellus aquaticus (isopoda), frequently occur in drinking water distribution systems where they are a nuisance to consumers and water utilities. Whether they are solely an aesthetic problem or also affect the microbial water quality is a matter of interest. We studied the influence of A. aquaticus on microbial water quality in non-chlorinated drinking water in controlled laboratory experiments. Pure cultures of the indicator organisms Escherichia coli and Klebsiella pneumoniae and the pathogen Campylobacter jejuni as well as naturally occurring heterotrophic drinking water bacteria (measured as heterotrophic plate counts, HPC) were investigated in microcosms at 7 °C, containing non-sterilised drinking water, drinking water sediment and A. aquaticus collected from a non-chlorinated ground water based drinking water supply system. Concentrations of E. coli, K. pneumoniae and C. jejuni decreased over time, following a first order decay with half lives of 5.3, 18.4 and 1.3 days, respectively. A. aquaticus did not affect survival of indicators and pathogens substantially whereas HPC were influenced by presence of dead A. aquaticus. Growth rates increased with an average of 48% for bacteria grown on R-2A agar and an average of 83% for bacteria grown on yeast extract agar when dead A. aquaticus were present compared to no and living A. aquaticus present. A. aquaticus associated E. coli, K. pneumoniae and C. jejuni were measured (up to 25 per living and 500 per dead A. aquaticus) and so were A. aquaticus associated heterotrophic bacteria (>1.8*10(4) CFU per living and >6*10(4) CFU per dead A. aquaticus). A. aquaticus did not serve as an optimised habitat that increased survival of indicators and pathogens, since A. aquaticus associated E. coli, K. pneumoniae and C. jejuni were only measured as long as the bacteria were also present in the water and sediment.


Subject(s)
Campylobacter jejuni/growth & development , Drinking Water/microbiology , Escherichia coli/growth & development , Isopoda/physiology , Klebsiella pneumoniae/growth & development , Agar , Animals , Colony Count, Microbial , Drinking Water/parasitology , Least-Squares Analysis , Population Dynamics , Survival Analysis , Water Quality/standards
7.
Water Res ; 46(11): 3516-24, 2012 Jul.
Article in English | MEDLINE | ID: mdl-22507250

ABSTRACT

Total ammonia nitrogen (TAN) removal by microbial nitrification is an essential process in recirculating aquaculture systems (RAS). In order to protect the aquatic environment and fish health, it is important to be able to predict the nitrification rates in RAS's. The aim of this study was to determine the impact of hydraulic film diffusion on the nitrification rate in a submerged biofilter. Using an experimental batch reactor setup with recirculation, active nitrifying biofilter units from a RAS were exposed to a range of hydraulic flow velocities. Corresponding nitrification rates were measured following ammonium chloride, NH4Cl, spikes and the impact of hydraulic film diffusion was quantified. The nitrification performance of the tested biofilter could be significantly increased by increasing the hydraulic flow velocity in the filter. Area based first order nitrification rate constants ranged from 0.065 m d⁻¹ to 0.192 m d⁻¹ for flow velocities between 2.5 m h⁻¹ and 40 m h⁻¹ (18 °C). This study documents that hydraulic film diffusion may have a significant impact on the nitrification rate in fixed film biofilters with geometry and hydraulic flows corresponding to our experimental RAS biofilters. The results may thus have practical implications in relation to the design, operational strategy of RAS biofilters and how to optimize TAN removal in fixed film biofilter systems.


Subject(s)
Aquaculture/instrumentation , Filtration/methods , Nitrification , Water Purification/instrumentation , Ammonia , Aquaculture/methods , Diffusion , Equipment Design , Filtration/instrumentation , Kinetics , Water Purification/methods
8.
Water Res ; 45(18): 6030-8, 2011 Nov 15.
Article in English | MEDLINE | ID: mdl-21943882

ABSTRACT

The fluorescence characteristics of natural organic matter in a groundwater based drinking water supply plant were studied with the aim of applying it as a technique to identify contamination of the water supply. Excitation-emission matrices were measured and modeled using parallel factor analysis (PARAFAC) and used to identify which wavelengths provide the optimal signal for monitoring contamination events. The fluorescence was characterized by four components: three humic-like and one amino acid-like. The results revealed that the relative amounts of two of the humic-like components were very stable within the supply plant and distribution net and changed in a predictable fashion depending on which wells were supplying the water. A third humic-like component and an amino acid-like component did not differ between wells. Laboratory contamination experiments with wastewater revealed that combined they could be used as an indicator of microbial contamination. Their fluorescence spectra did not overlap with the other components and therefore the raw broadband fluorescence at the wavelengths specific to their fluorescence could be used to detect contamination. Contamination could be detected at levels equivalent to the addition of 60 µg C/L in drinking water with a TOC concentration of 3.3 mg C/L. The results of this study suggest that these types of drinking water systems, which are vulnerable to microbial contamination due to the lack of disinfectant treatment, can be easily monitored using online organic matter fluorescence as an early warning system to prompt further intensive sampling and appropriate corrective measures.


Subject(s)
Drinking Water/standards , Environmental Monitoring/methods , Groundwater/standards , Organic Chemicals/chemistry , Water Pollution/analysis , Water Quality/standards , Denmark , Factor Analysis, Statistical , Filtration , Fluorescence , Online Systems , Ultraviolet Rays , Waste Disposal, Fluid
9.
Water Res ; 45(10): 3215-24, 2011 May.
Article in English | MEDLINE | ID: mdl-21507451

ABSTRACT

Danish drinking water supplies based on ground water without chlorination were investigated for the presence of the water louse, Asellus aquaticus, microinvertebrates (<2 mm) and annelida. In total, 52 water samples were collected from fire hydrants at 31 locations, and two elevated tanks (6000 and 36,000 m(3)) as well as one clean water tank at a waterworks (700 m(3)) were inspected. Several types of invertebrates from the phyla: arthropoda, annelida (worms), plathyhelminthes (flatworms) and mollusca (snails) were found. Invertebrates were found at 94% of the sampling sites in the piped system with A. aquaticus present at 55% of the sampling sites. Populations of A. aquaticus were present in the two investigated elevated tanks but not in the clean water tank at a waterworks. Both adult and juvenile A. aquaticus (length of 2-10 mm) were found in tanks as well as in pipes. A. aquaticus was found only in samples collected from two of seven investigated distribution zones (zone 1 and 2), each supplied directly by one of the two investigated elevated tanks containing A. aquaticus. Microinvertebrates were distributed throughout all zones. The distribution pattern of A. aquaticus had not changed considerably over 20 years when compared to data from samples collected in 1988-89. Centrifugal pumps have separated the distribution zones during the whole period and may have functioned as physical barriers in the distribution systems, preventing large invertebrates such as A. aquaticus to pass alive. Another factor characterising zone 1 and 2 was the presence of cast iron pipes. The frequency of A. aquaticus was significantly higher in cast iron pipes than in plastic pipes. A. aquaticus caught from plastic pipes were mainly single living specimens or dead specimens, which may have been transported passively trough by the water flow, while cast iron pipes provided an environment suitable for relatively large populations of A. aquaticus. Sediment volume for each sample was measured and our study described for the first time a clear connection between sediment volume and living A. aquaticus since living A. aquaticus were nearly only found in samples with sediment contents higher than 100 ml/m(3) sample. Presence of A. aquaticus was not correlated to turbidity of the water. Measurements by ATP, heterotrophic plate counting and Colilert(®) showed that the microbial quality of the water was high at all locations with or without animals. Four other large Danish drinking water supplies were additionally sampled (nine pipe samples and one elevated tank), and invertebrates were found in all systems, three of four containing A. aquaticus, indicating a nationwide occurrence.


Subject(s)
Geologic Sediments/parasitology , Halogenation , Invertebrates/growth & development , Water Supply/analysis , Water/parasitology , Animals , Body Size , Denmark , Geography , Invertebrates/anatomy & histology , Nephelometry and Turbidimetry , Pressure , Reproducibility of Results , Water/standards , Water Microbiology
10.
Water Res ; 45(6): 2306-14, 2011 Mar.
Article in English | MEDLINE | ID: mdl-21310459

ABSTRACT

Fluorescence Excitation-Emission Matrix spectroscopy combined with parallel factor analysis was employed to monitor water quality and organic contamination in swimming pools. The fluorescence signal of the swimming pool organic matter was low but increased slightly through the day. The analysis revealed that the organic matter fluorescence was characterised by five different components, one of which was unique to swimming pool organic matter and one which was specific to organic contamination. The latter component had emission peaks at 420 nm and was found to be a sensitive indicator of organic loading in swimming pool water. The fluorescence at 420 nm gradually increased during opening hours and represented material accumulating through the day.


Subject(s)
Environmental Monitoring/methods , Organic Chemicals/analysis , Swimming Pools , Carbon/analysis , Chlorine/chemistry , Factor Analysis, Statistical , Filtration , Fluorescence , Limit of Detection , Spectrometry, Fluorescence , Volatilization , Waste Disposal, Fluid
11.
Water Res ; 43(5): 1207-18, 2009 Mar.
Article in English | MEDLINE | ID: mdl-19136136

ABSTRACT

As water supplies increasingly turn to use desalination technologies it becomes relevant to consider the options for remineralization and blending with mineral rich water resources. We present a method for analyzing economic consequences due to changes in drinking water mineral content. Included impacts are cardiovascular diseases, dental caries, atopic eczema, lifetime of dish and clothes washing machines, heat exchangers, distribution systems, bottled water consumption and soap usage. The method includes an uncertainty assessment that ranks the impacts having the highest influence on the result and associated uncertainty. Effects are calculated for a scenario where 50% of Copenhagen's water supply is substituted by desalinated water. Without remineralization the total impact is expected to be negative (euro -0.44+/-0.2/m(3)) and individual impacts expected in the range of euro 0.01-0.51/m(3) delivered water. Health impacts have the highest contribution to impact size and uncertainty. With remineralization it is possible to reduce several negative impacts and the total impact is expected to be positive (euro 0.14+/-0.08/m(3)).


Subject(s)
Water Supply/standards , Water/standards , Cardiovascular Diseases/etiology , Denmark , Dentistry , Dermatitis, Atopic/etiology , Detergents , Drinking , Humans , Public Health , Salinity , Seawater , Water Supply/economics
12.
J Hazard Mater ; 163(1): 427-32, 2009 Apr 15.
Article in English | MEDLINE | ID: mdl-18715711

ABSTRACT

Anaerobic biodegradation of methyl tert-butyl ether (MTBE) using electron acceptors such as nitrate, Fe(III), sulfate and bicarbonate, may be more cost effective and feasible compared to aerobic treatment methods, for dealing with the MTBE problem. Currently, there are a few reports in the literature which have documented anaerobic biodegradation of MTBE in batch studies. However, some of the reports have been controversial, additionally many other studies have failed to document anaerobic biodegradation. Experiments were conducted over a long term period in both batch and continuous reactors to investigate the anaerobic biodegradability of MTBE and other gasoline ethers. Inoculums collected from various environments were used, along with different electron acceptors. Only one set of the batch experiments showed a 30-60% conversion of MTBE to tert-butyl alcohol under Fe(III)-reducing conditions, using complexed Fe(III). The use of complexed Fe(III) created an initial low pH of 1-2 in these batches due to its acidic nature, therefore, the removal may be due to acid hydrolysis rather than biological processes. Based on the findings obtained, caution should be applied in the interpretation of experimental data in which complexed Fe(III) is used for bioremediation of MTBE.


Subject(s)
Ethers/metabolism , Gasoline/analysis , Anaerobiosis , Oxidation-Reduction , Time Factors
13.
Water Res ; 42(12): 3122-34, 2008 Jun.
Article in English | MEDLINE | ID: mdl-18423514

ABSTRACT

A dynamic modeling approach was used to estimate in-situ model parameters, which describe the degradation of methyl tert-butyl ether (MTBE) in a laboratory packed bed reactor. The measured dynamic response of MTBE pulses injected at the reactor's inlet was analyzed by least squares and parameter response surface methodologies. Response surfaces were found to be statistically significant and thus suitable for estimating the global minimum as well as the 95% parameter uncertainty regions. The linear parameter uncertainty estimates for the half-saturation constant (K(S)) and the maximum growth rate (micro(max)) were: 0

Subject(s)
Bioreactors/microbiology , Methyl Ethers/metabolism , Models, Biological , Adenosine Triphosphate/metabolism , Biodegradation, Environmental , Computer Simulation , Kinetics , Methyl Ethers/chemistry , Oxidation-Reduction , Quaternary Ammonium Compounds/metabolism , Water Purification
14.
Water Res ; 42(12): 3098-108, 2008 Jun.
Article in English | MEDLINE | ID: mdl-18405937

ABSTRACT

A mathematical model was used to study effects on the degradation of methyl tert-butyl ether (MTBE) in a packed bed reactor due to the presence of contaminants such as ammonium, and the mix of benzene, toluene, ethylbenzene and xylenes (BTEX). It was shown that competition between the slower growing MTBE degraders and the co-contaminant oxidizers prevented MTBE's degradation when oxygen was limited. In this event, the co-contaminant oxidizers out-competed the MTBE degraders in the reactor's biofilm. However, if the oxygen supply was sufficient, MTBE would be fully degraded after the zone where the co-contaminants were oxidized. The results of the model further indicate that contradicting findings in the literature about the effects of BTEX on the degradation of MTBE are mainly due to differences in the study methodologies. Effects such as short-term toxicity of BTEX and the lack of steady-state conditions may also add to contradictions among reports.


Subject(s)
Bacteria/metabolism , Bioreactors , Methyl Ethers/metabolism , Models, Biological , Quaternary Ammonium Compounds/chemistry , Hydrocarbons/chemistry , Hydrocarbons/metabolism , Methyl Ethers/chemistry , Oxidation-Reduction
15.
Biotechnol Lett ; 30(1): 111-6, 2008 Jan.
Article in English | MEDLINE | ID: mdl-17851641

ABSTRACT

The fraction of biologically active methyl tert-butyl ether degraders in reactors is just as important for prediction of removal rates as knowledge of the kinetic parameters. The fraction of biologically active methyl tert-butyl ether degraders in a heterogeneous biomass sample, taken from a packed bed reactor, was determined using a batch kinetic based approach. The procedure involved modeling of methyl tert-butyl ether removal rates from batch experiments followed by parameter estimations. It was estimated to be 5-14% (w/w) of the measured volatile suspended solids concentration in the reactor.


Subject(s)
Bacteria/isolation & purification , Bacteria/metabolism , Bioreactors/microbiology , Colony Count, Microbial/methods , Methyl Ethers/analysis , Methyl Ethers/metabolism , Models, Biological , Biodegradation, Environmental , Computer Simulation , Reproducibility of Results , Sample Size , Sensitivity and Specificity
16.
Appl Environ Microbiol ; 71(12): 8611-7, 2005 Dec.
Article in English | MEDLINE | ID: mdl-16332854

ABSTRACT

In a model drinking water distribution system characterized by a low assimilable organic carbon content (<10 microg/liter) and no disinfection, the bacterial community was identified by a phylogenetic analysis of rRNA genes amplified from directly extracted DNA and colonies formed on R2A plates. Biofilms of defined periods of age (14 days to 3 years) and bulk water samples were investigated. Culturable bacteria were associated with Proteobacteria and Bacteriodetes, whereas independently of cultivation, bacteria from 12 phyla were detected in this system. These included Acidobacteria, Nitrospirae, Planctomycetes, and Verrucomicrobia, some of which have never been identified in drinking water previously. A cluster analysis of the population profiles from the individual samples divided biofilms and bulk water samples into separate clusters (P = 0.027). Bacteria associated with Nitrospira moscoviensis were found in all samples and encompassed 39% of the sequenced clones in the bulk water and 25% of the biofilm community. The close association with Nitrospira suggested that a large part of the population had an autotrophic metabolism using nitrite as an electron donor. To test this hypothesis, nitrite was added to biofilm and bulk water samples, and the utilization was monitored during 15 days. A first-order decrease in nitrite concentration was observed for all samples with a rate corresponding to 0.5 x 10(5) to 2 x 10(5) nitrifying cells/ml in the bulk water and 3 x 10(5) cells/cm(2) on the pipe surface. The finding of an abundant nitrite-oxidizing microbial population suggests that nitrite is an important substrate in this system, potentially as a result of the low assimilable organic carbon concentration. This finding implies that microbial communities in water distribution systems may control against elevated nitrite concentrations but also contain large indigenous populations that are capable of assisting the depletion of disinfection agents like chloramines.


Subject(s)
Alphaproteobacteria/isolation & purification , Biofilms , Nitrites/metabolism , Water Microbiology , Water Supply/standards , Alphaproteobacteria/classification , Molecular Sequence Data , Oxidation-Reduction , Phylogeny , Proteobacteria/classification , Proteobacteria/isolation & purification
17.
Environ Sci Technol ; 39(20): 8045-51, 2005 Oct 15.
Article in English | MEDLINE | ID: mdl-16295873

ABSTRACT

Elevated arsenic concentrations in drinking water occur in many places around the world. Arsenic is deleterious to humans, and consequently, As water treatment techniques are sought. To optimize arsenic removal, sorption and desorption processes were studied at a drinking water treatment plant with aeration and sand filtration of ferrous iron rich groundwater at Elmevej Water Works, Fensmark, Denmark. Filter sand and pore water were sampled along depth profiles in the filters. The sand was coated with a 100-300 microm thick layer of porous Si-Ca-As-contaning iron oxide (As/Fe = 0.17) with locally some manganese oxide. The iron oxide was identified as a Si-stabilized abiotically formed two-line ferrihydrite with a magnetic hyperfine field of 45.8 T at 5 K. The raw water has an As concentration of 25 microg/L, predominantly as As(II). As the water passes through the filters, As(III) is oxidized to As(V) and the total concentrations drop asymptotically to a approximately 15 microg/L equilibrium concentration. Mn is released to the pore water, indicating the existence of reactive manganese oxides within the oxide coating, which probably play a role for the rapid As(III) oxidation. The As removal in the sand filters appears controlled by sorption equilibrium onto the ferrihydrite. By addition of ferrous chloride (3.65 mg of Fe(II)/L) to the water stream between two serially connected filters, a 3 microg/L As concentration is created in the water that infiltrates into the second sand filter. However, as water flow is reestablished through the second filter, As desorbs from the ferrihydrite and increases until the 15 microg/L equilibrium concentration. Sequential chemical extractions and geometrical estimates of the fraction of surface-associated As suggest that up to 40% of the total As can be remobilized in response to changes in the water chemistry in the sand filter.


Subject(s)
Arsenic/chemistry , Ferric Compounds/chemistry , Silicon Dioxide , Water Pollutants, Chemical/analysis , Water Purification/methods , Adsorption , Denmark , Filtration , Kinetics , Microscopy, Electron , Spectrophotometry, Atomic , X-Ray Diffraction
18.
Water Res ; 38(1): 225-35, 2004 Jan.
Article in English | MEDLINE | ID: mdl-14630121

ABSTRACT

Bacterial growth in hot water systems seems to cause problems such as bad odor of the water, skin allergies and increased heat transfer resistance in heating coils. In order to establish a basis for long-term suppression of bacterial growth, we studied the distribution of bacteria in a Danish domestic hot water system. Heterotrophic plate counts (HPC) were measured in both water and biofilm samples from various sampling sites in the system. In hot water samples, where the temperature was 55-60 degrees C, the HPC were 10(3)-10(4)CFU/mL at incubation temperatures of 25 degrees C or 37 degrees C and 10(5)CFU/mL at 55 degrees C or 65 degrees C. In the cold water (10 degrees C) supplying the hot water system, the HPC at 25 degrees C or 37 degrees C was lower than in the hot water, and no bacteria were found after incubation at 55 degrees C or 65 degrees C. HPC constituted from 38% to 84% of the AODC results in hot water but only 2% in cold water, which showed a high ratio of culturable bacteria in hot water. Biofilm samples from the hot water tank and the inner surface of the pipes in the cold and hot water distribution system were collected by specially designed sampling devices, which were exposed in the system for 42 days. The quasi-steady-state number of bacteria in the biofilm, measured as the geometric mean of the HPC obtained between 21 and 42 days, was five-fold higher in the hot water pipe (13x10(5)CFU/cm(2) at 55 degrees C) than in the cold water pipe (2.8x10(5)CFU/cm(2) at 25 degrees C). There was no significant difference between the number of bacteria in the biofilm samples from the top, middle and bottom of the hot water tank, and the number of bacteria in the biofilm counted at 55 degrees C ranged from 0.6x10(4) to 1.7x10(4)CFU/cm(2). The surfaces of the sacrificial aluminum anodes and the heating coils in the hot water tank also contained high bacterial numbers. The measured number of bacteria in water and biofilm samples was related to the dimensions of the hot water system, and calculations showed that the majority of bacteria (72%) were located in the biofilm especially in the distribution system, which accounts for the greatest surface area. Free-living bacteria accounted for 26% and only a minor part of the bacteria were in the sludge in the hot water tank (2%).


Subject(s)
Bacteria/isolation & purification , Biofilms , Water Microbiology , Water Supply , Aluminum , Denmark , Hot Temperature , Housing , Population Dynamics , Reference Values
19.
Appl Environ Microbiol ; 69(11): 6899-907, 2003 Nov.
Article in English | MEDLINE | ID: mdl-14602654

ABSTRACT

In this study, we examined the long-term development of the overall structural morphology and community composition of a biofilm formed in a model drinking water distribution system with biofilms from 1 day to 3 years old. Visualization and subsequent quantification showed how the biofilm developed from an initial attachment of single cells through the formation of independent microcolonies reaching 30 micro m in thickness to a final looser structure with an average thickness of 14.1 micro m and covering 76% of the surface. An analysis of the community composition by use of terminal restriction fragment length polymorphisms showed a correlation between the population profile and the age of the sample, separating the samples into young (1 to 94 days) and old (571 to 1,093 days) biofilms, whereas a limited spatial variation in the biofilm was observed. A more detailed analysis with cloning and sequencing of 16S rRNA fragments illustrated how a wide variety of cells recruited from the bulk water initially attached and resulted in a species richness comparable to that in the water phase. This step was followed by the growth of a bacterium which was related to Nitrospira, which constituted 78% of the community by day 256, and which resulted in a reduction in the overall richness. After 500 days, the biofilm entered a stable population state, which was characterized by a greater richness of bacteria, including Nitrospira, Planctomyces, Acidobacterium, and Pseudomonas. The combination of different techniques illustrated the successional formation of a biofilm during a 3-year period in this model drinking water distribution system.


Subject(s)
Bacteria/growth & development , Biofilms/growth & development , Ecosystem , Fresh Water/microbiology , Genetic Variation , Water Supply , Bacteria/classification , Bacteria/genetics , Cloning, Molecular , DNA, Ribosomal/analysis , Microscopy, Confocal , Models, Biological , Molecular Sequence Data , Phylogeny , Polymorphism, Restriction Fragment Length , RNA, Ribosomal, 16S/genetics , Sequence Analysis, DNA
20.
Water Res ; 37(12): 3047-53, 2003 Jul.
Article in English | MEDLINE | ID: mdl-12767308

ABSTRACT

The influence of benzene as a growth substrate on the cometabolic conversion of thiophene was investigated in batch systems with microorganisms originating from an creosote contaminated site. Benzene was shown to stimulate the conversion of thiophene with a first-order rate, during the initial phase of transformation. The microorganisms were able to transform thiophene in the absence of benzene at a zero-order rate. Thiophene was converted to five oxidation products, regardless of the presence of benzene. Benzene had no influence on the distribution of these oxidation products. The main oxidation product, a thiophene sulphoxide dimer, represented 78+/-12% of the transformed thiophene, while the second most important product, also a thiophene sulphoxide dimer, represented 20+/-2% of the converted thiophene.


Subject(s)
Benzene/metabolism , Environmental Pollutants/metabolism , Thiophenes/metabolism , Bacteria , Biotransformation , Creosote , Kinetics , Oxidation-Reduction , Sulfides/analysis
SELECTION OF CITATIONS
SEARCH DETAIL
...