Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Article in English | MEDLINE | ID: mdl-39021165

ABSTRACT

BACKGROUND: Tyrosinase, often recognized as polyphenol oxidase, plays a pivotal role as an enzyme in catalyzing the formation of melanin-a complex process involving the oxidation of monophenols and o-diphenols. OBJECTIVE: Tyrosinase functions as a monooxygenase, facilitating the o-hydroxylation of monophenols to generate the corresponding catechols, as well as catalyzing the oxidation of monophenols to form the corresponding o-quinones, exhibiting diphenolase or catecholase activity. This versatile enzymatic capability is not limited to specific organisms but is found across various sources, including bacteria, fungi, plants, and mammals. METHOD: Pertinent research articles, reviews, and patents on tyrosinase were gathered through a comprehensive literature search. These materials were analyzed to gain insights into the diverse applications of tyrosinase. The review was structured by categorizing these applications and offering a thorough summary of the current state of knowledge in the field. RESULT: Based on the literature survey, tyrosinase exhibits promising potential across a spectrum of biotechnological applications. These include but are not limited to: synthesizing L-DOPA, creating innovative mixed melanins, manufacturing phenolic biosensors, deploying in food and feed industries, facilitating protein cross-linking, eliminating phenols and dyes, and serving as a biocatalyst. Moreover, immobilized tyrosinase demonstrates multiple utility avenues within the pharmaceutical sector. CONCLUSION: The article offers a comprehensive exploration of tyrosinase, encompassing its structural features, evolutionary origins, biochemical characteristics, and contemporary applications in various fields.

2.
Nat Prod Res ; : 1-5, 2023 Jun 12.
Article in English | MEDLINE | ID: mdl-37309142

ABSTRACT

To enhance the clinical effect of antifungal medications for treating deadly fungal infections there is an increasing demand for novel treatments. Exploration of multiple-drug targeting in antifungal therapeutics is the need of the present era. In this pursuit, we identified potent antifungal compounds that were directed towards the multiple virulent targets in Rhizopus arrhizus. Quinoxaline di-N-oxide and piperazine derivatives were identified to exhibit antifungal activities. 03 bioactive compounds were identified from the docking results and antifungal activity. Furthermore, these compounds which were combined with the alkaline extract of M. olifera to make the aqueous phase, an oil phase containing cinnamon oil or clove oil and a combination of surfactants was made to prepare a bioactive composite emulsion. A significant antimycotic activity was seen for the bioactive composite emulsion when compared with the clinically used antifungal drugs. Our results indicate the synergy and potentiation of antimycotic drugs based on integrative medicine.

3.
J Biomol Struct Dyn ; 41(24): 14757-14770, 2023.
Article in English | MEDLINE | ID: mdl-36995997

ABSTRACT

In search of new anti-breast cancer agents, the present study envisaged the design and synthesis of a series of benzopyran-chalcones. All the synthesized compounds were assayed for their in-vitro anticancer activity against ER + MCF-7 and triple-negative MDA-MB-231 breast cancer cell lines using SRB assay. The synthesized compounds were found active against ER + MCF-7 cell lines. Based on the in-vitro data, in-silico analysis was performed using hormone-dependent breast cancer targets such as hER-α and aromatase because the compounds showed activity against MCF-7 cells and none was active against MDA-MB-231. The in-silico results supported the in-vitro anticancer activity suggesting the affinity of compounds toward hormone-dependant breast cancer. Compounds 4A1 to 4A3 were found to be most cytotoxic to MCF-7 cells with IC50 values of 31.87, 22.95, and 20.34 µg/ml, respectively (Doxorubicin IC50: <10 µg/ml). In addition, they showed the interactions with the amino acid residues of a binding cavity of an hER-α. Furthermore, quantitative structure-activity relationship (QSAR) studies were performed to reveal the vital structural features required for anticancer activity against breast cancer. Molecular dynamic simulation studies of hER-α and 4A3 in comparison with the raloxifene complex ensure the appropriate refinement of compounds in the dynamic system. Additionally, a generated pharmacophore model explored the essential pharmacophoric features of the synthesized scaffolds with respect to clinically used drug molecules for optimal hormone-dependant anti-breast cancer activity.Communicated by Ramaswamy H. Sarma.


Subject(s)
Antineoplastic Agents , Neoplasms , Female , Humans , Molecular Docking Simulation , Quantitative Structure-Activity Relationship , Pharmacophore , Chromones/pharmacology , Antineoplastic Agents/chemistry , MCF-7 Cells , Hormones/pharmacology , Cell Proliferation , Molecular Structure , Drug Screening Assays, Antitumor
SELECTION OF CITATIONS
SEARCH DETAIL
...