Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
G3 (Bethesda) ; 11(1)2021 01 18.
Article in English | MEDLINE | ID: mdl-33561224

ABSTRACT

In cats, mutations in myosin binding protein C (encoded by the MYBPC3 gene) have been associated with hypertrophic cardiomyopathy (HCM). However, the molecular mechanisms linking these mutations to HCM remain unknown. Here, we establish Drosophila melanogaster as a model to understand this connection by generating flies harboring MYBPC3 missense mutations (A31P and R820W) associated with feline HCM. The A31P and R820W flies displayed cardiovascular defects in their heart rates and exercise endurance. We used RNA-seq to determine which processes are misregulated in the presence of mutant MYBPC3 alleles. Transcriptome analysis revealed significant downregulation of genes encoding small nucleolar RNA (snoRNAs) in exercised female flies harboring the mutant alleles compared to flies that harbor the wild-type allele. Other processes that were affected included the unfolded protein response and immune/defense responses. These data show that mutant MYBPC3 proteins have widespread effects on the transcriptome of co-regulated genes. Transcriptionally differentially expressed genes are also candidate genes for future evaluation as genetic modifiers of HCM as well as candidate genes for genotype by exercise environment interaction effects on the manifestation of HCM; in cats as well as humans.


Subject(s)
Cardiomyopathy, Hypertrophic , Carrier Proteins/genetics , Heat-Shock Proteins/genetics , RNA, Small Nucleolar , Animals , Cardiomyopathy, Hypertrophic/genetics , Cats , Disease Models, Animal , Drosophila , Drosophila melanogaster , Female , Mutation , RNA, Small Nucleolar/genetics
2.
Genome Res ; 30(3): 485-496, 2020 03.
Article in English | MEDLINE | ID: mdl-32144088

ABSTRACT

A major challenge in modern biology is to understand how naturally occurring variation in DNA sequences affects complex organismal traits through networks of intermediate molecular phenotypes. This question is best addressed in a genetic mapping population in which all molecular polymorphisms are known and for which molecular endophenotypes and complex traits are assessed on the same genotypes. Here, we performed deep RNA sequencing of 200 Drosophila Genetic Reference Panel inbred lines with complete genome sequences and for which phenotypes of many quantitative traits have been evaluated. We mapped expression quantitative trait loci for annotated genes, novel transcribed regions, transposable elements, and microbial species. We identified host variants that affect expression of transposable elements, independent of their copy number, as well as microbiome composition. We constructed sex-specific expression quantitative trait locus regulatory networks. These networks are enriched for novel transcribed regions and target genes in heterochromatin and euchromatic regions of reduced recombination, as well as genes regulating transposable element expression. This study provides new insights regarding the role of natural genetic variation in regulating gene expression and generates testable hypotheses for future functional analyses.


Subject(s)
Drosophila melanogaster/genetics , Gene Expression Regulation , Gene Regulatory Networks , Animals , DNA Transposable Elements , Drosophila melanogaster/metabolism , Drosophila melanogaster/microbiology , Female , Genetic Variation , High-Throughput Nucleotide Sequencing , Male , Microbiota/genetics , Quantitative Trait Loci , Sequence Analysis, RNA
3.
J Gerontol A Biol Sci Med Sci ; 74(12): 1844-1852, 2019 11 13.
Article in English | MEDLINE | ID: mdl-31197356

ABSTRACT

Physical resiliency declines with age and comorbid conditions. In humans, angiotensin-converting enzyme (ACE) has been associated with attenuation of the decline in physical performance with age. ACE-inhibitor compounds, commonly prescribed for hypertension, often have beneficial effects on physical performance however the generality of these effects are unclear. Here, we tested the effects of the ACE-inhibitor Lisinopril on life span, and age-specific speed, endurance, and strength using three genotypes of the Drosophila melanogaster Genetic Reference Panel. We show that age-related decline in physical performance and survivorship varies with genetic background. Lisinopril treatment increased mean life span in all Drosophila Genetic Reference Panel lines, but its effects on life span, speed, endurance, and strength depended on genotype. We show that genotypes with increased physical performance on Lisinopril treatment experienced reduced age-related protein aggregation in muscle. Knockdown of skeletal muscle-specific Ance, the Drosophila ortholog of ACE, abolished the effects of Lisinopril on life span, implying a role for skeletal muscle Ance in survivorship. Using transcriptome profiling, we identified genes involved in stress response that showed expression changes associated with genotype and age-dependent responsiveness to Lisinopril. Our results demonstrate that Ance is involved in physical decline and demonstrate genetic variation in phenotypic responses to an ACE inhibitor.


Subject(s)
Angiotensin-Converting Enzyme Inhibitors/pharmacology , Drosophila Proteins/metabolism , Drosophila melanogaster/drug effects , Lisinopril/pharmacology , Longevity/drug effects , Peptidyl-Dipeptidase A/metabolism , Animals , Drosophila melanogaster/genetics , Genotype , Male , Phenotype , Transcriptome
4.
Behav Genet ; 47(2): 227-243, 2017 03.
Article in English | MEDLINE | ID: mdl-27704301

ABSTRACT

Food consumption is an essential component of animal fitness; however, excessive food intake in humans increases risk for many diseases. The roles of neuroendocrine feedback loops, food sensing modalities, and physiological state in regulating food intake are well understood, but not the genetic basis underlying variation in food consumption. Here, we applied ten generations of artificial selection for high and low food consumption in replicate populations of Drosophila melanogaster. The phenotypic response to selection was highly asymmetric, with significant responses only for increased food consumption and minimal correlated responses in body mass and composition. We assessed the molecular correlates of selection responses by DNA and RNA sequencing of the selection lines. The high and low selection lines had variants with significantly divergent allele frequencies within or near 2081 genes and 3526 differentially expressed genes in one or both sexes. A total of 519 genes were both genetically divergent and differentially expressed between the divergent selection lines. We performed functional analyses of the effects of RNAi suppression of gene expression and induced mutations for 27 of these candidate genes that have human orthologs and the strongest statistical support, and confirmed that 25 (93 %) affected the mean and/or variance of food consumption.


Subject(s)
Drosophila melanogaster/genetics , Feeding Behavior/physiology , Animals , Drosophila Proteins , Drosophila melanogaster/physiology , Feeding Behavior/psychology , Female , Food , Gene Frequency , Genes, Insect , Genetic Variation , Genomics , Male , Phenotype , RNA Interference , Selection, Genetic
5.
G3 (Bethesda) ; 6(10): 3335-3342, 2016 10 13.
Article in English | MEDLINE | ID: mdl-27558663

ABSTRACT

Social interactions in insects are driven by conspecific chemical signals that are detected via olfactory and gustatory neurons. Odorant binding proteins (Obps) transport volatile odorants to chemosensory receptors, but their effects on behaviors remain poorly characterized. Here, we report that RNAi knockdown of Obp56h gene expression in Drosophila melanogaster enhances mating behavior by reducing courtship latency. The change in mating behavior that results from inhibition of Obp56h expression is accompanied by significant alterations in cuticular hydrocarbon (CHC) composition, including reduction in 5-tricosene (5-T), an inhibitory sex pheromone produced by males that increases copulation latency during courtship. Whole genome RNA sequencing confirms that expression of Obp56h is virtually abolished in Drosophila heads. Inhibition of Obp56h expression also affects expression of other chemoreception genes, including upregulation of lush in both sexes and Obp83ef in females, and reduction in expression of Obp19b and Or19b in males. In addition, several genes associated with lipid metabolism, which underlies the production of cuticular hydrocarbons, show altered transcript abundances. Our data show that modulation of mating behavior through reduction of Obp56h is accompanied by altered cuticular hydrocarbon profiles and implicate 5-T as a possible ligand for Obp56h.


Subject(s)
Drosophila Proteins/genetics , Drosophila melanogaster/physiology , Receptors, Odorant/genetics , Sexual Behavior, Animal , Animals , Animals, Genetically Modified , Copulation , Drosophila Proteins/metabolism , Female , Gene Expression Profiling , Gene Expression Regulation , Gene Knockdown Techniques , Genome-Wide Association Study , Hydrocarbons/metabolism , Male , Metabolomics , Psychomotor Performance , RNA Interference , Receptors, Odorant/metabolism
6.
Chem Senses ; 40(4): 233-43, 2015 May.
Article in English | MEDLINE | ID: mdl-25687947

ABSTRACT

The genetic underpinnings that contribute to variation in olfactory perception are not fully understood. To explore the genetic basis of variation in olfactory perception, we measured behavioral responses to 14 chemically diverse naturally occurring odorants in 260400 flies from 186 lines of the Drosophila melanogaster Genetic Reference Panel, a population of inbred wild-derived lines with sequenced genomes. We observed variation in olfactory behavior for all odorants. Low to moderate broad-sense heritabilities and the large number of tests for genotype-olfactory phenotype association performed precluded any individual variant from reaching formal significance. However, the top variants (nominal P < 5×10(-5)) were highly enriched for genes involved in nervous system development and function, as expected for a behavioral trait. Further, pathway enrichment analyses showed that genes tagged by the top variants included components of networks centered on cyclic guanosine monophosphate and inositol triphosphate signaling, growth factor signaling, Rho signaling, axon guidance, and regulation of neural connectivity. Functional validation with RNAi and mutations showed that 15 out of 17 genes tested indeed affect olfactory behavior. Our results show that in addition to chemoreceptors, variation in olfactory perception depends on polymorphisms that can result in subtle variations in synaptic connectivity within the nervous system.


Subject(s)
Behavior, Animal/physiology , Drosophila melanogaster/genetics , Drosophila melanogaster/physiology , Genetic Variation/genetics , Olfactory Perception/genetics , Olfactory Perception/physiology , Animals
7.
Genetics ; 186(4): 1475-85, 2010 Dec.
Article in English | MEDLINE | ID: mdl-20870963

ABSTRACT

How functional diversification affects the organization of the transcriptome is a central question in systems genetics. To explore this issue, we sequenced all six Odorant binding protein (Obp) genes located on the X chromosome, four of which occur as a cluster, in 219 inbred wild-derived lines of Drosophila melanogaster and tested for associations between genetic and phenotypic variation at the organismal and transcriptional level. We observed polymorphisms in Obp8a, Obp19a, Obp19b, and Obp19c associated with variation in olfactory responses and polymorphisms in Obp19d associated with variation in life span. We inferred the transcriptional context, or "niche," of each gene by identifying expression polymorphisms where genetic variation in these Obp genes was associated with variation in expression of transcripts genetically correlated to each Obp gene. All six Obp genes occupied a distinct transcriptional niche. Gene ontology enrichment analysis revealed associations of different Obp transcriptional niches with olfactory behavior, synaptic transmission, detection of signals regulating tissue development and apoptosis, postmating behavior and oviposition, and nutrient sensing. Our results show that diversification of the Obp family has organized distinct transcriptional niches that reflect their acquisition of additional functions.


Subject(s)
Drosophila melanogaster/genetics , Receptors, Odorant/genetics , Animals , Drosophila Proteins/genetics , Genes, Insect , Genetic Variation , Transcription, Genetic
8.
Genetics ; 174(1): 125-34, 2006 Sep.
Article in English | MEDLINE | ID: mdl-16816414

ABSTRACT

Drosophila melanogaster males lack recombination and have evolved a mechanism of meiotic chromosome segregation that is independent of both the chiasmatic and achiasmatic segregation systems of females. The teflon (tef) gene is specifically required in males for proper segregation of autosomes and provides a genetic tool for understanding recombination-independent mechanisms of pairing and segregation as well as differences in sex chromosome vs. autosome segregation. Here we report on the cloning of the tef gene and the molecular characterization of tef mutations. Rescue experiments using a GAL4-driven pUAS transgene demonstrate that tef corresponds to predicted Berkeley Drosophila Genome Project (BDGP) gene CG8961 and that tef expression is required in the male germ line prior to spermatocyte stage S4. Consistent with this early prophase requirement, expression of tef was found to be independent of regulators of meiotic M phase initiation or progression. The predicted Tef protein contains three C2H2 zinc-finger motifs, one at the amino terminus and two in tandem at the carboxyl terminus. In addition to the zinc-finger motifs, a 44- to 45-bp repeat is conserved in three related Drosophila species. On the basis of these findings, we propose a role for Tef as a bridging molecule that holds autosome bivalents together via heterochromatic connections.


Subject(s)
Chromosomal Proteins, Non-Histone/genetics , Chromosomal Proteins, Non-Histone/isolation & purification , Chromosome Segregation/genetics , Drosophila Proteins/genetics , Drosophila Proteins/isolation & purification , Drosophila melanogaster/genetics , Meiosis/genetics , Amino Acid Sequence , Animals , Animals, Genetically Modified , Chromosomal Proteins, Non-Histone/metabolism , Chromosome Mapping , DNA, Complementary/isolation & purification , Drosophila Proteins/metabolism , Embryo, Nonmammalian , Gene Expression Regulation, Developmental , Genes, Insect , Heterochromatin , Male , Molecular Sequence Data , Nondisjunction, Genetic , Phylogeny , Sequence Homology, Amino Acid , Transgenes/physiology
SELECTION OF CITATIONS
SEARCH DETAIL
...