Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 11 de 11
Filter
Add more filters










Publication year range
1.
Polymers (Basel) ; 15(9)2023 Apr 24.
Article in English | MEDLINE | ID: mdl-37177157

ABSTRACT

Surface engineering of conventional catalysts using polymeric coating has been extensively explored for producing hybrid catalytic material with enhanced activity, high mechanical and thermal stability, enhanced productivity, and selectivity of the desired product. The present review discusses in detail the state-of-the-art knowledge on surface modification of catalysts, namely photocatalysts, electrocatalysts, catalysts for photoelectrochemical reactions, and catalysts for other types of reactions, such as hydrodesulfurization, carbon dioxide cycloaddition, and noble metal-catalyzed oxidation/reduction reactions. The various techniques employed for the polymer coating of catalysts are discussed and the role of polymers in enhancing the catalytic activity is critically analyzed. The review further discusses the applications of biodegradable and biocompatible natural polysaccharide-based polymers, namely, chitosan and polydopamine as prospective coating material.

2.
Environ Sci Pollut Res Int ; 30(4): 8416-8428, 2023 Jan.
Article in English | MEDLINE | ID: mdl-34988813

ABSTRACT

Food materials are consumed for nutritional purposes in the form of fruits, vegetables, plants, and meat. These contain proteins, carbohydrates, and other useful nutritional compounds and these processed foods are a rich source of nutrition. The demand and supply of hygienic food for a particular population is possible only by food preservation. It can be done by various methods such as drying, freezing, chilling, chemical preservation, and pasteurization. Drying is a method of food preservation and it can be done by solar drying, microwave heating, vacuum drying, and some other methods. Microwave heating is a fast-drying method. It utilizes electrical energy to generate heat energy. The domestic microwave oven is not harmful but a commercial-level oven may be little bit harmful, when operated on high frequency. Potato is used as a sample material with different shapes such as slab, cylindrical, and spherical. The microwave oven has been operated at four different microwave powers such as 100 W, 300 W, 600 W, and 800 W. Slab-shaped (30 °C), cylindrical-shaped (31.5 °C), and spherical-shaped (30.5 °C) food materials achieved maximum temperatures of 83.9 °C, 110.6 °C, and 146.1 °C respectively. The temperature variations and drying characteristics of the food samples have been monitored. An oven has achieved maximum drying efficiency of 25.65% with a slab-shaped sample. For the detection of the cracks and chemical compositions in the food samples, SEM with EDS analysis has been performed. Economic analysis of microwave oven has also been done and payback period has been found as 3.27 years.


Subject(s)
Hot Temperature , Solanum tuberosum , Microwaves , Food Preservation/methods , Meat
3.
Environ Sci Pollut Res Int ; 30(4): 8526-8539, 2023 Jan.
Article in English | MEDLINE | ID: mdl-35554831

ABSTRACT

The major global concern on energy is focused on conventional fossil resources. The burning of fossil fuels is an origin of greenhouse gas emissions resulting in the utmost threat to the environment and subsequently which leads to global climate changes. As far as sustainability is concerned, fuels and materials derived from organic or plant wastes overcome this downside establishing the solution to the fossil resource crisis. In this context, exploration of agricultural residue appears to be a suitable alternative of non-renewable resources to support the environmental feasibility and meet the high energy crisis. The use of agricultural waste as a feedstock for the biorefinery approach emerges to be an eco-friendly process for the production of biofuel and value-added chemicals, intensifying energy security. Therefore, a prospective choice of this renewable biomass for the synthesis of green fuel and other green biochemicals comes up with a favorable outcome in terms of cost-effectiveness and sustainability. Exploiting different agricultural biomass and exploring various biomass conversion techniques, biorefinery generates bioenergy in a strategic way which eventually fits in a circular bioeconomy. Sources and production of agricultural waste are critically explained in this paper, which provides a path for further value addition by various technologies. Biorefinery solutions, along with a life cycle assessment of agricultural waste biomass toward a wide array of value-added products aiding the bioeconomy, are summarized in this paper.


Subject(s)
Fossil Fuels , Plants , Biofuels , Biomass , Prospective Studies , Recycling
4.
Environ Sci Pollut Res Int ; 30(4): 8485-8499, 2023 Jan.
Article in English | MEDLINE | ID: mdl-35157206

ABSTRACT

The huge demand and consumption of DOX, its incomplete metabolism, and complex behavior in atmosphere are causing a great ecological issue, which needs to be solved. In the present study, the suitability of rice husk ash (RHA) for the greater sorption efficiency of DOX antibiotic was investigated. Furthermore, disposability study of exhausted RHA was performed using solidification technique and leachate had undergone toxicity test to evaluate the DOX encapsulation ability. The central composite design under RSM was employed for the design of experiment and optimization of adsorption parameters. RHA was characterized using various techniques such as XRD, SEM (EDX), FTIR, BET, and zeta potential analysis. The influence of various adsorption parameters, like initial DOX concentration (C0), RHA dosage (m), incubation-time period (t), and pH were examined on the performance in terms of DOX elimination % (X1) and adsorptive capacity (mg/g) (X2). At optimized conditions, the obtained X1 and X2 were 98.85% and 17.74 mg/g, respectively. Moreover, the kinetics data suited well to the pseudo-second-order model. Freundlich, Langmuir, and Redlich-Peterson (R-P) isotherm models were applied, out of which Langmuir model best performed under optimized conditions; m = 5 g/L, t = 85.85 min, DOX concentration = 89.73 mg/L, and pH = 6. The bacterial toxicity test of leachate confirmed complete encapsulation of DOX by solidification technique.


Subject(s)
Oryza , Water Pollutants, Chemical , Doxycycline/metabolism , Oryza/chemistry , Hydrogen-Ion Concentration , Anti-Bacterial Agents/metabolism , Adsorption , Kinetics , Water Pollutants, Chemical/chemistry
6.
Drug Deliv Transl Res ; 13(4): 946-965, 2023 04.
Article in English | MEDLINE | ID: mdl-36575354

ABSTRACT

The low aqueous solubility and subsequently slow dissolution rate, as well as the poor bioavailability of several active pharmaceutical ingredients (APIs), are major challenges in the pharmaceutical industry. In this review, the particle engineering approaches using supercritical carbon dioxide (SC CO2) as an antisolvent are critically reviewed. The different SC CO2-based antisolvent processes, such as the gas antisolvent process (GAS), supercritical antisolvent process (SAS), and a solution-enhanced dispersion system (SEDS), are described. The effect of process parameters such as temperature, pressure, solute concentration, nozzle diameter, SC CO2 flow rate, solvent type, and solution flow rate on the average particle size, particle size distribution, and particle morphology is discussed from the fundamental perspective of the SAS process. The applications of the SAS process in different formulation approaches such as solid dispersion, polymorphs, cocrystallization, inclusion complexation, and encapsulation to enhance the dissolution rate, solubility, and bioavailability are critically reviewed. This review highlights some areas where the SAS process has not been adequately explored yet. This review will be helpful to researchers working in this area or planning to explore SAS process to particle engineering approaches to tackle the challenge of low solubility and subsequently slow dissolution rate and poor bioavailability.


Subject(s)
Carbon Dioxide , Water , Carbon Dioxide/chemistry , Solvents/chemistry , Solutions , Temperature , Particle Size , Solubility
7.
Drug Deliv Transl Res ; 13(2): 400-418, 2023 02.
Article in English | MEDLINE | ID: mdl-35953765

ABSTRACT

The present work reviews the liquid antisolvent crystallization (LASC) to prepare the nanoparticle of pharmaceutical compounds to enhance their solubility, dissolution rate, and bioavailability. The application of ultrasound and additives is discussed to prepare the particles with narrow size distribution. The use of ionic liquid as an alternative to conventional organic solvent is presented. Herbal compounds, also known for low aqueous solubility and limited clinical application, have been crystalized by LASC and discussed here. The particle characteristics such as particle size and particle size distribution are interpreted in terms of supersaturation, nucleation, and growth phenomena. To overcome the disadvantage of batch crystallization, the scientific literature on continuous flow reactors is also reviewed. LASC in a microfluidic device is emerging as a promising technique. The different design of the microfluidic device and their application in LASC are discussed. The combination of the LASC technique with traditional techniques such as high-pressure homogenization and spray drying is presented. A comparison of product characteristics prepared by LASC and the supercritical CO2 antisolvent method is discussed to show that LASC is an attractive and inexpensive alternative for nanoparticle preparation. One of the major strengths of this paper is a discussion on less-explored applications of LASC in pharmaceutical research to attract the attention of future researchers.


Subject(s)
Nanoparticles , Water , Crystallization/methods , Solvents/chemistry , Nanoparticles/chemistry , Pharmaceutical Preparations , Particle Size , Solubility , Technology, Pharmaceutical
8.
Chemosphere ; 288(Pt 3): 132609, 2022 Feb.
Article in English | MEDLINE | ID: mdl-34687683

ABSTRACT

This review article provides the recent progress in semiconductor-based zeolite photoactive materials for the application of noxious contaminants removal. The rapidly expanding industrialization and globalization cause serious threats to the environment or water bodies. The semiconductor@zeolite photocatalysts were implemented for water quality management/sustainment. The exclusive properties of zeolite material have been elaborated with their role in the photocatalysis process. The photoactive material's properties like single-atom catalysts (SACs), distribution of metal in the zeolite crystal were elaborated along with their role in catalytic reactions. Differently prepared semiconductor@zeolite composites such as TiO2@zeolite, binary and ternary composites, Fe/Ag/bismuth-modified/ZnO/ZnS/NiO/g-C3N4/core-shell/quantum dots modified zeolite composites, were systematically summarized. The research progress in morphologies, structural effect, degradation mechanism were recapitulated and tabulated form of % degradation with their optimal parameters such as catalyst dose, pollutant concentrations, pH, light source intensities were also provided. The significance of zeolite frameworks, the structural properties of semiconductor@zeolite photoactive materials to enhance the degradation efficiencies was explored. Analysis of the intermediate products of Norfloxacin, TCDD (2,3,7,8-tetrachlorodibenzo-p-dioxin), TCDF (2,3,7,8-tetrachlorodibenzofuran), diclofenac contaminants were systematically represented and structurally identified by GC-MS/HPLC-MS techniques.


Subject(s)
Zeolites , Catalysis , Norfloxacin , Photolysis , Semiconductors
9.
Healthcare (Basel) ; 9(12)2021 Dec 20.
Article in English | MEDLINE | ID: mdl-34946492

ABSTRACT

In this work, a comprehensive model for the viral progression in the pharynx has been developed. This one-dimension model considers both Fickian diffusion and convective flow coupled with chemical reactions, such as virus population growth, infected and uninfected cell accumulation as well as virus clearance. The effect of a sterilizing agent such as an alcoholic solution on the viral progression in the pharynx was taken into account and a parametric analysis for the effect of kinetic rate parameters on virus propagation was made. Moreover, different conditions caused by further medical treatment, such as a decrease in virus yield per infected cell, were examined. It is shown that the infection fails to establish by decreasing the virus yield per infected cell. It is believed that this work could be used to further investigate the medical treatment of viral progression in the pharynx.

10.
Int J Appl Basic Med Res ; 7(Suppl 1): S4-S7, 2017 Dec.
Article in English | MEDLINE | ID: mdl-29344449

ABSTRACT

INTRODUCTION: Project-based learning (PBL) is motivational for students to learn research methodology skills. It is a way to engage and give them ownership over their own learning. AIMS AND OBJECTIVES: The aim of this study is to use PBL for application of research methodology skills for better learning by encouraging an all-inclusive approach in teaching and learning rather than an individualized tailored approach. METHODOLOGY: The present study was carried out for MBBS 6th- and 7th-semester students of community medicine. Students and faculties were sensitized about PBL and components of research methodology skills. They worked in small groups. The students were asked to fill the student feedback Questionnaire and the faculty was also asked to fill the faculty feedback Questionnaire. Both the Questionnaires were assessed on a 5 point Likert scale. After submitted projects, document analysis was done. RESULTS: A total of 99 students of the 6th and 7th semester were participated in PBL. About 90.91% students agreed that there should be continuation of PBL in subsequent batches. 73.74% felt satisfied and motivated with PBL, whereas 76.77% felt that they would be able to use research methodology in the near future. CONCLUSIONS: PBL requires considerable knowledge, effort, persistence, and self-regulation on the part of the students. They need to devise plans, gather information evaluate both the findings, and their approach. Facilitator plays a critical role in helping students in the process by shaping opportunity for learning, guiding students, thinking, and helping them construct new understanding.

SELECTION OF CITATIONS
SEARCH DETAIL
...