Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
J Invertebr Pathol ; 160: 54-60, 2019 01.
Article in English | MEDLINE | ID: mdl-30528638

ABSTRACT

The entomopathogenic nematode, Steinernema scapterisci, a specialist parasite of crickets, has been successfully used to combat the southern mole cricket, Neoscapteriscus borellii, which is an invasive pest of turf grass. As an entomopathogenic nematode, S. scapterisci causes rapid death of the insects it infects and uses bacteria to facilitate its parasitism. However, our understanding of the relative contributions of the nematode, S. scapterisci, and its bacterial symbiont, Xenorhabdus innexi, to parasitism remains limited. Here we utilized the sand cricket, Gryllus firmus, as a model host to evaluate the contributions of the EPNs S. scapterisci and S. carpocapsae, as well as their symbiotic bacteria, X. innexi and X. nematophila, respectively, to the virulence of the nematode-bacterial complex. We found that G. firmus has reduced susceptibility to infection from both S. scapterisci and the closely related generalist parasite S. carpocapsae, but that S. scapterisci is much more virulent than S. carpocapsae. Further, we found that N. borellii has reduced susceptibility to X. nematophila, and that G. firmus has reduced susceptibility to X. nematophila, X. innexi, and Serratia marcescens, much more so than other insects that have been studied. We found that the reduced susceptibility of G. firmus to bacterial infection is dependent on development, with adults being less susceptible to infection than nymphs. Our data provide evidence that unlike other EPNs, the virulence of S. scapterisci to crickets is dependent on the nematode rather than the bacterial symbiont that it carries and we speculate that S. scapterisci may be evolving independence from X. innexi.


Subject(s)
Bacterial Infections/parasitology , Gryllidae/parasitology , Nematode Infections , Rhabditida/pathogenicity , Xenorhabdus/pathogenicity , Animals , Biological Control Agents , Disease Susceptibility/parasitology , Gryllidae/microbiology , Nematode Infections/parasitology , Serratia/pathogenicity , Virulence
2.
BMC Genomics ; 18(1): 927, 2017 Dec 01.
Article in English | MEDLINE | ID: mdl-29191166

ABSTRACT

BACKGROUND: Xenorhabdus innexi is a bacterial symbiont of Steinernema scapterisci nematodes, which is a cricket-specialist parasite and together the nematode and bacteria infect and kill crickets. Curiously, X. innexi expresses a potent extracellular mosquitocidal toxin activity in culture supernatants. We sequenced a draft genome of X. innexi and compared it to the genomes of related pathogens to elucidate the nature of specialization. RESULTS: Using green fluorescent protein-expressing X. innexi we confirm previous reports using culture-dependent techniques that X. innexi colonizes its nematode host at low levels (~3-8 cells per nematode), relative to other Xenorhabdus-Steinernema associations. We found that compared to the well-characterized entomopathogenic nematode symbiont X. nematophila, X. innexi fails to suppress the insect phenoloxidase immune pathway and is attenuated for virulence and reproduction in the Lepidoptera Galleria mellonella and Manduca sexta, as well as the dipteran Drosophila melanogaster. To assess if, compared to other Xenorhabdus spp., X. innexi has a reduced capacity to synthesize virulence determinants, we obtained and analyzed a draft genome sequence. We found no evidence for several hallmarks of Xenorhabdus spp. toxicity, including Tc and Mcf toxins. Similar to other Xenorhabdus genomes, we found numerous loci predicted to encode non-ribosomal peptide/polyketide synthetases. Anti-SMASH predictions of these loci revealed one, related to the fcl locus that encodes fabclavines and zmn locus that encodes zeamines, as a likely candidate to encode the X. innexi mosquitocidal toxin biosynthetic machinery, which we designated Xlt. In support of this hypothesis, two mutants each with an insertion in an Xlt biosynthesis gene cluster lacked the mosquitocidal compound based on HPLC/MS analysis and neither produced toxin to the levels of the wild type parent. CONCLUSIONS: The X. innexi genome will be a valuable resource in identifying loci encoding new metabolites of interest, but also in future comparative studies of nematode-bacterial symbiosis and niche partitioning among bacterial pathogens.


Subject(s)
Bacterial Toxins/metabolism , Host-Pathogen Interactions , Tylenchida/microbiology , Tylenchida/physiology , Xenorhabdus/pathogenicity , Aedes , Animals , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Drosophila melanogaster/drug effects , Drosophila melanogaster/immunology , Drosophila melanogaster/microbiology , Genome, Bacterial , Green Fluorescent Proteins/metabolism , Lepidoptera/drug effects , Lepidoptera/immunology , Lepidoptera/microbiology , Male , Phylogeny , Quantitative Trait Loci , Symbiosis , Tylenchida/drug effects , Tylenchida/immunology , Virulence , Virulence Factors/genetics , Virulence Factors/metabolism , Xenorhabdus/classification , Xenorhabdus/genetics , Xenorhabdus/physiology
3.
J Invertebr Pathol ; 150: 54-62, 2017 11.
Article in English | MEDLINE | ID: mdl-28916147

ABSTRACT

We report the isolation and identification of seven bacterial strains and one fungal strain from dead and diseased Scapteriscus borellii mole crickets collected from a golf course in southern California. Using 16S and 18S rRNA gene sequence analysis we identified the microbes as Serratia marcescens (red), S. marcescens (white), S. marcescens (purple), Achromobacter xylosoxidans, Chryseobacterium sp., Ochrobactrum anthropi, Tsukamurella tryosinosolvens, and Beauveria bassiana. We performed a dose response curve for each of these cricket-associated microbial strains (except T. tryosinosolvens) and two other strains of S. marcescens (DB1140 and ATCC 13880). We found that all of these microbes except O. anthropi were highly pathogenic to D. melanogaster compared to the other strains of S. marcescens. Injecting the mole cricket associated strains of Serratia into flies killed all infected flies in ≤24h. For all other strains, the median time to death of injected flies varied in a dose-dependent manner. In vivo growth assessments of these microbes suggested that the host immune system was quickly overcome. We used disease tolerance curves to better understand the host-microbe interactions. Further studies are necessary to understand in mechanistic detail the virulence mechanisms of these mole cricket associated microbes and how this association may have influenced the evolution of mole cricket immunity.


Subject(s)
Achromobacter denitrificans/pathogenicity , Beauveria/pathogenicity , Chryseobacterium/pathogenicity , Gryllidae/microbiology , Ochrobactrum anthropi/pathogenicity , Serratia marcescens/pathogenicity , Achromobacter denitrificans/genetics , Animals , Beauveria/genetics , Chryseobacterium/genetics , Drosophila melanogaster , Ochrobactrum anthropi/genetics , Serratia marcescens/genetics
4.
J Nematol ; 47(4): 322-31, 2015 Dec.
Article in English | MEDLINE | ID: mdl-26941461

ABSTRACT

Understanding rooting dynamics using the minirhizotron technique is useful for cultivar selection and to quantify nematode damage to roots. A 2-yr microplot study including five bermudagrass ('Tifway', Belonolaimus longicaudatus susceptible; two commercial cultivars [TifSport and Celebration] and two genotypes ['BA132' and 'PI 291590'], which have been reported to be tolerant to B. longicaudatus) and two St. Augustinegrass ('FX 313', susceptible, and 'Floratam' that was reported as tolerant to B. longicaudatus) genotypes in a 5 x 2 and 2 x 2 factorial design with four replications, respectively, was initiated in 2012. Two treatments included were uninoculated and B. longicaudatus inoculated. In situ root images were captured each month using a minirhizotron camera system from April to September of 2013 and 2014. Mixed models analysis and comparison of least squares means indicated significant differences in root parameters studied across the genotypes and soil depths of both grass species. 'Celebration', 'TifSport' and 'PI 291590' bermudagrass, and 'Floratam' St. Augustinegrass had significantly different root parameters compared to the corresponding susceptible genotypes (P ≤ 0.05). Only 'TifSport' had no significant root loss when infested with B. longicaudatus compared to non-infested. 'Celebration' and 'PI 291590' had significant root loss but retained significantly greater root densities than 'Tifway' in B. longicaudatus-infested conditions (P ≤ 0.05). Root lengths were greater at the 0 to 5 cm depth followed by 5 to 10 and 10 to 15 cm of vertical soil depth for both grass species (P ≤ 0.05). 'Celebration', 'TifSport', and 'PI 291590' had better root vigor against B. longicaudatus compared to Tifway.

5.
J Nematol ; 43(3-4): 160-5, 2011 Sep.
Article in English | MEDLINE | ID: mdl-23430318

ABSTRACT

Systemic acquired resistance (SAR) can be elicited by virulent and avirulent pathogenic strains and SAR against plant-parasitic nematodes has been documented. Our objective was to determine whether co-infection of cotton by Meloidogyne incognita and Rotylenchulus reniformis affects the population level of either nematode compared to infection by each species individually. Split-root trials were conducted in which plants were inoculated with i) R. reniformis only, ii) M. incognita only, iii) both R. reniformis and M. incognita, or iv) no nematodes. Half of the root system was inoculated with R. reniformis or M. incognita on day 0 and the other half with M. incognita or R. reniformis on day 0 or day 14 depending on the experiment. Experiments were conducted on cotton cultivar DP 0935 B2RF (susceptible to both nematodes), LONREN-1 (germplasm line resistant to R. reniformis), and M-120 RNR (germplasm line resistant to M. incognita), and tests were terminated 8 wk after the last inoculation. Both soil (vermiform) and roots (egg) extracted from each half of the root system to determine the total nematode population levels, and root galling was rated on a 0 to 10 scale. Mixed models analysis and comparison of least squares means indicated no differences in root galling (except on LONREN-1) or population levels when the two nematode species were introduced on the same day. When M. incognita was introduced 14 d after R. reniformis, reduction in galling (36% on DP 0935 and 33% on LONREN-1) and M. incognita population levels (35% on DP 0935 and 45% on LONREN-1) were significant (P ≤ 0.05). When R. reniformis was inoculated 14 d after M. incognita, reduction in R. reniformis population levels (18% on DP 0935 and 26% on M-120) were significant. This study documents for the first time that infection of cotton by a nematode can elicit SAR to another nematode species.

6.
J Nematol ; 43(3-4): 152-9, 2011 Sep.
Article in English | MEDLINE | ID: mdl-23431029

ABSTRACT

Systemic acquired resistance (SAR), which results in enhanced defense mechanisms in plants, can be elicited by virulent and avirulent strains of pathogens including nematodes. Recent studies of nematode reproduction strongly suggest that Meloidogyne incognita and Rotylenchulus reniformis induce SAR in cotton, but biochemical evidence of SAR was lacking. Our objective was to determine whether infection of cotton by M. incognita and R. reniformis increases the levels of P-peroxidase, G-peroxidase, and catalase enzymes which are involved in induced resistance. A series of greenhouse trials was conducted; each trial included six replications of four treatments applied to one of three cotton genotypes in a randomized complete block design. The four treatments were cotton plants inoculated with i) R. reniformis, ii) M. incognita, iii) BTH (Actigard), and iv) a nontreated control. Experiments were conducted on cotton genotypes DP 0935 B2RF (susceptible to both nematodes), LONREN-1 (resistant to R. reniformis), and M-120 RNR (resistant to M. incognita), and the level of P-peroxidase, G-peroxidase, and catalase activity was measured before and 2, 4, 6, 10, and 14 d after treatment application. In all cotton genotypes, activities of all three enzymes were higher (P ≤ 0.05) in leaves of plants infected with M. incognita and R. reniformis than in the leaves of control plants, except that M. incognita did not increase catalase activity on LONREN-1. Increased enzyme activity was usually apparent 6 d after treatment. This study documents that infection of cotton by M. incognita or R. reniformis increases the activity of the enzymes involved in systemic acquired resistance; thereby providing biochemical evidence to substantiate previous reports of nematode-induced SAR in cotton.

SELECTION OF CITATIONS
SEARCH DETAIL
...