Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
Add more filters










Publication year range
1.
Molecules ; 28(2)2023 Jan 07.
Article in English | MEDLINE | ID: mdl-36677677

ABSTRACT

The human body is in daily contact with potentially toxic and infectious substances in the gastrointestinal tract (GIT). The GIT has the most significant load of antigens. The GIT can protect the intestinal integrity by allowing the passage of beneficial agents and blocking the path of harmful substances. Under normal conditions, a healthy intestinal barrier prevents toxic elements from entering the blood stream. However, factors such as stress, an unhealthy diet, excessive alcohol, antibiotics, and drug consumption can compromise the composition of the intestinal microbiota and the homeostasis of the intestinal barrier function of the intestine, leading to increased intestinal permeability. Intestinal hyperpermeability can allow the entry of harmful agents through the junctions of the intestinal epithelium, which pass into the bloodstream and affect various organs and systems. Thus, leaky gut syndrome and intestinal barrier dysfunction are associated with intestinal diseases, such as inflammatory bowel disease and irritable bowel syndrome, as well as extra-intestinal diseases, including heart diseases, obesity, type 1 diabetes mellitus, and celiac disease. Given the relationship between intestinal permeability and numerous conditions, it is convenient to seek an excellent strategy to avoid or reduce the increase in intestinal permeability. The impact of dietary nutrients on barrier function can be crucial for designing new strategies for patients with the pathogenesis of leaky gut-related diseases associated with epithelial barrier dysfunctions. In this review article, the role of functional ingredients is suggested as mediators of leaky gut-related disorders.


Subject(s)
Gastrointestinal Diseases , Gastrointestinal Microbiome , Irritable Bowel Syndrome , Humans , Gastrointestinal Diseases/prevention & control , Irritable Bowel Syndrome/drug therapy , Intestinal Mucosa , Permeability
2.
Int J Mol Sci ; 21(21)2020 Nov 04.
Article in English | MEDLINE | ID: mdl-33158240

ABSTRACT

Nut-based milks and yogurts are gaining popularity, but may not offer the same benefits as dairy yogurts to consumers. Cashew nuts often cause severe allergic reactions, and cashew nut allergens are stable to several types of processing. To compare its characteristics to dairy yogurt and characterize the effects of fermentation on the Ana o 1-3 cashew nut allergens, a commercial yogurt made from cashew nuts (Cashewgurt) was evaluated for microbiological, physiochemical, and immunological properties. Average counts for lactobacilli and Streptococcus thermophilus were greater than 10 million colony forming units per milliliter, indicating the capacity to provide a health benefit. Cashewgurt pH and viscosity values were comparable to cow milk yogurts, and it was off white in color. SDS-PAGE analysis indicated a clear reduction in Ana o 1 and 2, and immuno-assay with polyclonal anti-cashew IgG antibody and cashew-allergic IgE indicated an overall reduction in allergen content. In contrast, SDS-PAGE, mass spectrometry, immunoblot, and ELISA all revealed that Ana o 3 was relatively unaffected by the fermentation process. In conclusion, Ana o 1 and Ana o 2 are sensitive to degradation, while Ana o 3 survives lactic acid bacterial fermentation during yogurt production. The analysis presented here indicates that cashew nut yogurt is not suitable for those with cashew nut allergy.


Subject(s)
Allergens/analysis , Anacardium/chemistry , Yogurt/microbiology , Allergens/immunology , Amino Acid Sequence , Anacardium/immunology , Bacterial Load , Bifidobacterium/classification , Bifidobacterium/isolation & purification , Chemical Phenomena , Commerce , Enterobacteriaceae/classification , Enterobacteriaceae/isolation & purification , Food Analysis/methods , Food Hypersensitivity/immunology , Humans , Hydrogen-Ion Concentration , Lactobacillus/classification , Lactobacillus/isolation & purification , Nut Hypersensitivity/immunology , Nuts/immunology , Nuts/microbiology , Probiotics/analysis , Streptococcus thermophilus/classification , Streptococcus thermophilus/isolation & purification , Viscosity , Yogurt/analysis
3.
Am J Clin Nutr ; 108(3): 492-501, 2018 09 01.
Article in English | MEDLINE | ID: mdl-30010698

ABSTRACT

Background: Type 2 resistant starch (RS2) has been shown to improve glycemic control and some cardiovascular endpoints in rodent and human studies. Objective: The aim of this study was to perform one of the first randomized clinical trials in adults with prediabetes and one of the longest trials to test whether RS2 can improve cardiometabolic health. Design: 68 overweight [body mass index (BMI) ≥27 kg/m2] adults aged 35-75 y with prediabetes were randomized to consume 45 g/d of high-amylose maize (RS2) or an isocaloric amount of the rapidly digestible starch amylopectin (control) for 12 wk. At baseline and postintervention, ectopic fat depots (visceral adipose tissue, intrahepatic lipids, and intramyocellular lipids) were measured by magnetic resonance imaging/spectroscopy, energy metabolism by respiratory chamber, and carbohydrate metabolism by glycated hemoglobin (HbA1c), an intravenous glucose tolerance test, and a meal tolerance test. Cardiovascular risk factors-serum lipids, blood pressure, heart rate, and inflammatory markers (high-sensitivity C-reactive protein [hs-CRP], interleukin-6, and tumor necrosis factor [TNF]-α)-were also measured. The primary endpoints were insulin sensitivity, insulin secretion, ectopic fat, and markers of inflammation. Data were primarily analyzed as treatment effects via a linear mixed model both with and without the addition of covariates. Results: Relative to the control group, RS2 lowered HbA1c by a clinically insignificant 0.1 ± 0.2% (Δ = -1 ± 2 mmol/mol; P = 0.05) but did not affect insulin secretion, insulin sensitivity, the disposition index, or glucose or insulin areas under the curve relative to baseline (P ≥ 0.23). RS2 decreased heart rate by 5 ± 9 beats/min (P = 0.02) and TNF-α concentrations by 2.1 ± 2.7 pg/mL (P = 0.004), relative to the control group. Ectopic fat, energy expenditure, substrate oxidation, and all other cardiovascular risk factors were unaffected (P ≥ 0.06). Conclusions: 12 wk of supplementation with resistant starch reduced the inflammatory marker TNF-α and heart rate, but it did not significantly improve glycemic control and other cardiovascular disease risk factors, in adults with prediabetes. This trial was registered at clinicaltrials.gov as NCT01708694.


Subject(s)
Cardiovascular Diseases/prevention & control , Diabetic Cardiomyopathies/prevention & control , Metabolic Diseases/pathology , Prediabetic State/drug therapy , Starch/analogs & derivatives , Adult , Aged , Blood Glucose/analysis , Body Composition/drug effects , Double-Blind Method , Energy Metabolism , Glucose Tolerance Test , Glycated Hemoglobin/analysis , Humans , Intra-Abdominal Fat/drug effects , Metabolic Diseases/etiology , Middle Aged , Placebos , Prediabetic State/blood , Resistant Starch , Risk Factors , Starch/administration & dosage , Starch/adverse effects
4.
Contemp Clin Trials ; 65: 99-108, 2018 02.
Article in English | MEDLINE | ID: mdl-29274892

ABSTRACT

Dietary resistant starch (RS) might alter gastrointestinal tract function in a manner that improves human health, particularly among adults at risk for diabetes. Here, we report the design and baseline results (with emphasis on race differences) from the STARCH trial, the first comprehensive metabolic phenotyping of people with prediabetes enrolled in a randomized clinical trial testing the effect of RS on risk factors for diabetes. Overweight/obese participants (BMI≥27kg/m2 and weight≤143kg), age 35-75y, with confirmed prediabetes were eligible. Participants were randomized to consume 45g/day of RS (RS=amylose) or amylopectin (Control) for 12weeks. The study was designed to evaluate the effect of RS on insulin sensitivity and secretion, ectopic fat, and inflammatory markers. Secondary outcomes included energy expenditure, substrate oxidation, appetite, food intake, colonic microbial composition, fecal and plasma levels of short-chain fatty acids, fecal RS excretion, and gut permeability. Out of 280 individuals screened, 68 were randomized, 65 started the intervention, and 63 were analyzed at baseline (mean age 55y, BMI 35.6kg/m2); 2 were excluded from baseline analyses due to abnormal insulin and diabetes. Sex and race comparisons at baseline were reported. African-Americans had higher baseline acute insulin response to glucose (AIRg measured by frequently sampled intravenous glucose tolerance test) compared to Caucasians, despite having less visceral adipose tissue mass and intrahepatic lipid; all other glycemic variables were similar between races. Sleep energy expenditure was ~90-100kcal/day lower in African-Americans after adjusting for insulin sensitivity and secretion. This manuscript provides an overview of the strategy used to enroll people with prediabetes into the STARCH trial and describes methodologies used in the assessment of risk factors for diabetes. Clinicaltrials.gov identifier: STARCH (NCT01708694). The present study reference can be found here: https://clinicaltrials.gov/ct2/show/NCT01708694. Submission Category: "Study Design, Statistical Design, Study Protocols".


Subject(s)
Amylose/pharmacology , Amylose/therapeutic use , Prediabetic State/drug therapy , Adipose Tissue , Adult , Aged , Amylopectin/pharmacology , Amylopectin/therapeutic use , Appetite/physiology , Behavior Therapy , Body Mass Index , Double-Blind Method , Energy Intake/physiology , Energy Metabolism/physiology , Fatty Acids, Volatile/blood , Feces/microbiology , Female , Gastrointestinal Microbiome/drug effects , Humans , Inflammation Mediators/metabolism , Insulin Resistance/physiology , Male , Middle Aged , Phenotype , Prediabetic State/ethnology , Prediabetic State/therapy , Racial Groups , Risk Factors
5.
J Dairy Sci ; 100(12): 9987-10013, 2017 Dec.
Article in English | MEDLINE | ID: mdl-29153184

ABSTRACT

The history of the last 100 years of the science and technology of yogurt, sour cream, cultured butter, cultured buttermilk, kefir, and acidophilus milk has been one of continuous development and improvement. Yogurt leads the cultured dairy product category in terms of volume of production in the United States and recent research activity. Legal definitions of yogurt, sour cream and acidified sour cream, and cultured milk, including cultured buttermilk, are presented in the United States Code of Federal Regulations and summarized here. A tremendous amount of research has been done on traditional and novel ingredients, starter cultures and probiotics, mix processing, packaging, chemical aspects, physical and sensory properties, microstructure, specialized products, composition, quality and safety of yogurt and various manufacturing methods, addition of flavorings, viscosity measurements, and probiotic use for sour cream. Over time, there have arisen alternative manufacturing methods, flavor problems, addition of flavorings, and use of probiotics for cultured buttermilk. Many health benefits are provided by yogurt and other cultured dairy products. One hundred years of testing and development have led to wider uses of cultured dairy products and new processing methods for enhanced shelf life and safety. Future research directions will likely include investigating the effects of probiotic dairy products on gut microbiota and overall health.


Subject(s)
Legislation, Food/history , Yogurt/history , Cultured Milk Products/analysis , Cultured Milk Products/history , History, 20th Century , History, 21st Century , United States , Yogurt/analysis
7.
J Dairy Sci ; 98(9): 5946-54, 2015 Sep.
Article in English | MEDLINE | ID: mdl-26142862

ABSTRACT

Reducing particle size of salt to approximately 1.5 µm would increase its surface area, leading to increased dissolution rate in saliva and more efficient transfer of ions to taste buds, and hence, perhaps, a saltier perception of foods. This has a potential for reducing the salt level in surface-salted foods. Our objective was to develop a salt using a nano spray-drying method, to use the developed nano spray-dried salt in surface-salted cheese cracker manufacture, and to evaluate the microbiological and sensory characteristics of cheese crackers. Sodium chloride solution (3% wt/wt) was sprayed through a nano spray dryer. Particle sizes were determined by dynamic light scattering, and particle shapes were observed by scanning electron microscopy. Approximately 80% of the salt particles produced by the nano spray dryer, when drying a 3% (wt/wt) salt solution, were between 500 and 1,900 nm. Cheese cracker treatments consisted of 3 different salt sizes: regular salt with an average particle size of 1,500 µm; a commercially available Microsized 95 Extra Fine Salt (Cargill Salt, Minneapolis, MN) with an average particle size of 15 µm; and nano spray-dried salt with an average particle size of 1.5 µm, manufactured in our laboratory and 3 different salt concentrations (1, 1.5, and 2% wt/wt). A balanced incomplete block design was used to conduct consumer analysis of cheese crackers with nano spray-dried salt (1, 1.5, and 2%), Microsized salt (1, 1.5, and 2%) and regular 2% (control, as used by industry) using 476 participants at 1wk and 4mo. At 4mo, nano spray-dried salt treatments (1, 1.5, and 2%) had significantly higher preferred saltiness scores than the control (regular 2%). Also, at 4mo, nano spray-dried salt (1.5 and 2%) had significantly more just-about-right saltiness scores than control (regular 2%). Consumers' purchase intent increased by 25% for the nano spray-dried salt at 1.5% after they were notified about the 25% reduction in sodium content of the cheese cracker. We detected significantly lower yeast counts for nano spray-dried salt treatments (1, 1.5, and 2%) at 4mo compared with control (regular) salt (1, 1.5 and 2%). We detected no mold growth in any of the treatments at any time. At 4mo, we found no significant differences in sensory color, aroma, crunchiness, overall liking, or acceptability scores of cheese crackers using 1.5 and 1% nano spray-dried salt compared with control. Therefore, 25 to 50% less salt would be suitable for cheese crackers if the particle size of regular salt was reduced 3 log to form nano spray-dried salt. A 3-log reduction in sodium chloride particle size from regular salt to nano spray-dried salt increased saltiness, but a 1-log reduction in salt size from Microsized salt to nano spray-dried salt did not increase saltiness of surface-salted cheese crackers. The use of salt with reduced particle size by nano spray drying is recommended for use in surface-salted cheese crackers to reduce sodium intake.


Subject(s)
Cheese/analysis , Sodium Chloride, Dietary/analysis , Taste , Colony Count, Microbial , Color , Consumer Behavior , Food Contamination/analysis , Food Contamination/prevention & control , Food Handling , Food Microbiology , Food Preservation , Food Preservatives/analysis , Humans , Nanostructures/chemistry , Particle Size
8.
J Dairy Sci ; 98(4): 2215-21, 2015 Apr.
Article in English | MEDLINE | ID: mdl-25622877

ABSTRACT

Acid tolerance and bile tolerance are important probiotic characteristics. Whey proteins contain branched-chain amino acids, which play a role in muscle building and are popular among athletes. Increasing emphasis is being placed on diets containing less carbohydrate, less fat, and more protein. The effect of incremental additions of whey protein isolate (WPI) on probiotic characteristics of pure cultures is not known. The objective of this study was to determine the influence of added WPI on acid tolerance and bile tolerance of pure cultures of Streptococcus thermophilus ST-M5 and Lactobacillus bulgaricus LB-12. The WPI was used at 0 (control), 1, 2 and 3% (wt/vol). Assessment of acid tolerance was conducted on pure cultures at 30-min intervals for 2h of acid exposure and bile tolerance at 1-h intervals for 5h of bile exposure. Use of 1, 2, and 3% WPI improved acid tolerance of Strep. thermophilus ST-M5 and Lb. bulgaricus LB-12. The highest counts for acid tolerance of Strep. thermophilus ST-M5 and Lb. bulgaricus LB-12 were obtained when 3% WPI was used. Use of 2 and 3% WPI improved bile tolerance of Strep. thermophilus ST-M5 and Lb. bulgaricus LB-12 over 5h of bile exposure. The use of WPI is recommended to improve acid and bile tolerance of the yogurt culture bacteria Strep. thermophilus ST-M5 and Lb. bulgaricus LB-12.


Subject(s)
Bile/metabolism , Lactobacillus delbrueckii/drug effects , Streptococcus thermophilus/drug effects , Whey Proteins/pharmacology , Food Microbiology , Lactobacillus delbrueckii/metabolism , Probiotics , Streptococcus thermophilus/metabolism , Yogurt/microbiology
9.
J Dairy Sci ; 97(10): 6007-15, 2014 Oct.
Article in English | MEDLINE | ID: mdl-25151880

ABSTRACT

For manufacture of commercial yogurt powder, yogurt has to go through a drying process, which substantially lowers the yogurt culture counts, so the potential health benefits of the yogurt culture bacteria are reduced. Also, upon reconstitution, commercial yogurt powder does not taste like yogurt and has an off-flavor. The objective was to study the microbial, physicochemical, and sensory characteristics of reconstituted yogurt from yogurt cultured milk powder (YCMP) mix and reconstituted yogurt from commercial yogurt powder (CYP). The CYP reconstituted yogurt was the control and YCMP mix reconstituted yogurt was the treatment. Microbial and physicochemical characteristics of the CYP reconstituted yogurt and YCMP mix reconstituted yogurt were analyzed daily for the first week and then weekly for a period of 8 wk. Sensory consumer testing of CYP reconstituted yogurt and YCMP mix reconstituted yogurt was conducted with 100 consumers. At 56 d, YCMP mix reconstituted yogurt had 5 log cfu/mL higher counts of Streptococcus thermophilus than the control (CYP reconstituted yogurt). Also, Lactobacillus bulgaricus counts of YCMP mix reconstituted yogurt were 6.55 log cfu/mL at 28 d and were 5.35 log cfu/mL at 56 d, whereas the CYP reconstituted yogurt from 28 d onwards had a count of <10 cfu/mL. The YCMP mix reconstituted yogurt also had significantly higher apparent viscosity and sensory scores for appearance, color, aroma, taste, thickness, overall liking, consumer acceptability, and purchase intent than CYP reconstituted yogurt. Overall, YCMP mix reconstituted yogurt had more desirable characteristics than CYP reconstituted yogurt.


Subject(s)
Cultured Milk Products/standards , Food Handling/methods , Yogurt/analysis , Yogurt/standards , Animals , Bacteria/isolation & purification , Colony Count, Microbial , Cultured Milk Products/chemistry , Fungi/isolation & purification , Milk/chemistry , Powders/chemistry , Yeasts/isolation & purification , Yogurt/microbiology
10.
J Dairy Sci ; 96(6): 3424-34, 2013 Jun.
Article in English | MEDLINE | ID: mdl-23587394

ABSTRACT

Pulsed electric field (PEF) processing involves the application of pulses of voltage for less than 1 s to fluid products placed between 2 electrodes. The effect of mild PEF on beneficial characteristics of probiotic bacteria Lactobacillus acidophilus and Lactobacillus delbrueckii ssp. bulgaricus is not clearly understood. The objective of this study was to determine the influence of mild PEF conditions on acid tolerance, growth, and protease activity of Lb. acidophilus LA-K and Lactobacillus delbrueckii ssp. bulgaricus LB-12. A pilot plant PEF system (OSU-4M; The Ohio State University, Columbus) was used. The PEF treatments were positive square unipolar pulse width of 3 µs, pulse period of 0.5s, electric field strength of 1 kV/cm, delay time of 20 µs, flow rate of 60 mL/min, and 40.5°C PEF treatment temperature. Both Lb. acidophilus LA-K and Lb. bulgaricus LB-12 subjected to mild PEF conditions were acid tolerant until the end of the 120 min of incubation, unlike the Lb. bulgaricus control, which was not acid tolerant after 30 min. The mild PEF-treated Lb. acidophilus LA-K and Lb. bulgaricus LB-12 reached the logarithmic phase of growth an hour earlier than the control. Mild PEF conditions studied significantly improved acid tolerance, exponential growth, and protease activity of both Lb. acidophilus LA-K and Lb. bulgaricus LB-12 compared with the control. The mild PEF conditions studied can be recommended for pretreating cultures to enhance these desirable attributes.


Subject(s)
Lactobacillus acidophilus/growth & development , Lactobacillus delbrueckii/growth & development , Peptide Hydrolases/metabolism , Electricity , Hydrogen-Ion Concentration , Lactobacillus acidophilus/enzymology , Lactobacillus delbrueckii/enzymology , Probiotics , Yogurt/microbiology
SELECTION OF CITATIONS
SEARCH DETAIL
...