Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Biotechnol Bioeng ; 114(3): 560-575, 2017 03.
Article in English | MEDLINE | ID: mdl-27641904

ABSTRACT

Performance losses during scale-up are described since decades, but are still one of the major obstacles for industrial bioprocess development. Consequently, robustness to inhomogeneous cultivation environments is an important quality of industrial production organisms. Especially, Corynebacterium glutamicum was proven to have an outstanding resistance against rapid changes of oxygen and substrate availability as occurring in industrial scale bioreactors. This study focuses on the identification of metabolic key mechanisms for this robustness to get a deeper insight and provide future targets for process orientated strain development. A 1,5-diaminopentane producing C. glutamicum strain was cultivated in a two compartment scale-down device to create short-term environmental changes simulating industrial scale cultivation conditions. Using multi omics based methods, it is shown, that central metabolism is flexibly rearranged under short-term oxygen depletion and carbon source excess to overcome shortage in NAD+ recycling. In order to balance the redox state, key enzymes for the non-oxygen dependent fermentative NAD+ regeneration were significantly up-regulated while parts of non-essential pathways were down-regulated. The transfer of the cells back into the well aerated zones with low substrate concentration triggers an additional upregulation of genes for the re-assimilation of previously formed side products, showing L-lactate forming and utilizing reactions being active at the same time. Especially L-lactate as reversible and flexible external buffer for carbon and redox equivalents puts C. glutamicum in a robust position to deal with inhomogeneity in large scale processes. Biotechnol. Bioeng. 2017;114: 560-575. © 2016 Wiley Periodicals, Inc.


Subject(s)
Bioreactors/microbiology , Corynebacterium glutamicum/metabolism , Diamines/metabolism , Pentanes/metabolism , Diamines/analysis , Gene Expression Profiling , Glucose/metabolism , Metabolic Networks and Pathways , Oxygen/analysis , Oxygen/metabolism , Pentanes/analysis
2.
Microb Cell Fact ; 14: 156, 2015 Oct 05.
Article in English | MEDLINE | ID: mdl-26438243

ABSTRACT

BACKGROUND: Recombinant protein production using Escherichia coli as expression host is highly efficient, however, it also induces strong host cell metabolic burden. Energy and biomass precursors are withdrawn from the host's metabolism as they are required for plasmid replication, heterologous gene expression and protein production. Rare codons in a heterologous gene may be a further drawback. This study aims to investigate the influence of particular silent codon exchanges within a heterologous gene on host cell metabolic activity. Silent mutations were introduced into the coding sequence of a model protein to introduce all synonymous arginine or leucine codons at two randomly defined positions, as well as substitutions leading to identical amino acid exchanges with different synonymous codons. The respective E. coli clones were compared during cultivation in a mineral autoinduction medium using specialized online and offline measuring techniques to quantitatively analyze effects on respiration, biomass and protein production, as well as on carbon source consumption, plasmid copy number, intracellular nucleobases and mRNA content of each clone. RESULTS: Host stain metabolic burden correlates with recombinant protein production. Upon heterologous gene expression, tremendous differences in respiration, biomass and protein production were observed. According to their different respiration activity the E. coli clones could be classified into two groups, Type A and Type B. Type A clones tended to higher product formation, Type B clones showed stronger biomass formation. Whereas codon usage and intracellular nucleobases had no influence on the Type-A-Type-B-behavior, plasmid copy number, mRNA content and carbon source consumption strongly differed between the two groups. CONCLUSIONS: Particular silent codon exchanges in a heterologous gene sequence led to differences in initial growth of Type A and Type B clones. Thus, the biomass concentration at the time point of induction varied. In consequence, not only plasmid copy number and expression levels differed between the two groups, but also the kinetics of lactose and glycerol consumption. Even though the underlying molecular mechanisms are not yet identified we observed the astonishing phenomenon that particular silent codon exchanges within a heterologous gene tremendously affect host cell metabolism and recombinant protein production. This could have great impact on codon optimization of heterologous genes, screening procedures for improved variants, and biotechnological protein production processes.


Subject(s)
Codon , Escherichia coli/metabolism , Recombinant Proteins/biosynthesis , Bacillus subtilis/genetics , Bacterial Proteins/genetics , Biomass , Carbon/metabolism , Gene Dosage , Lipase/genetics , Metabolic Engineering , Metabolome , Mutagenesis, Site-Directed , Plasmids/genetics , Plasmids/metabolism , RNA, Messenger/metabolism , Recombinant Proteins/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...