Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Polymers (Basel) ; 15(11)2023 May 23.
Article in English | MEDLINE | ID: mdl-37299210

ABSTRACT

Nowadays, the hybridization of natural and glass fiber has promised several advantages as a green composite. Nevertheless, their different characteristics lead to poor mechanical bonding. In this work, agel fiber and glass fiber was used as reinforcements, and activated carbon filler was added to the polymer matrix of a hybrid composite to modify its characteristics and mechanical properties. A tensile and bending test was conducted to evaluate the effect of three different weight percentages of activated carbon filler (1, 2, and 4 wt%). Vacuum-assisted resin infusion was used to manufacture the hybrid composite to obtain the high-quality composite. The results have revealed that adding 1 wt% filler yielded the most optimum result with the highest tensile strength, flexural strength, and elastic modulus, respectively: 112.90 MPa, 85.26 MPa, and 1.80 GPa. A higher weight percentage of activated carbon filler on the composite reduced its mechanical properties. The lowest test value was shown by the composite with 4 wt%. The micrograph observations have proven that the 4 wt% composite formed agglomeration filler that can induce stress concentration and reduce its mechanical performance. Adding 1 wt% filler offered the best dispersion in the matrix, which can enhance better load transfer capability.

2.
Heliyon ; 9(2): e13544, 2023 Feb.
Article in English | MEDLINE | ID: mdl-36816248

ABSTRACT

Metal-oxide doped conductive polymers have been investigated as sensors in the field of gas-sensing. Recent developments have highlighted the role of intrinsically conductive polymers, that have reportedly offered high surface response towards the detection of volatile organic compounds (VOCs). In this work, we optimize the development of gas-sensors made of Polyaniline/Zinc oxide (PANI/ZnO) composite, capable of detecting a varied class of VOCs such as, ammonia, acetone, formaldehyde, methanol, and ethanol. The conductivity of these sensors is evaluated at room temperature and are investigated until saturation. In addition to the final application, this work also focusses on the synthesis strategies to achieve an 'optimal' matrix-to-additive ratio, such that superior chemical response is paralleled with mechanical robustness for PANI based sensors. The PANI/ZnO composites are casted into sensors bearing different additive ratios, via a drop-casting method and the same is evaluated for its formability and mechanical behavior. Physio-chemical characterization was performed using Fourier Transform Infrared Spectroscopy (FTIR), Scanning Electron Microscope (SEM), and Energy Dispersive X-ray Analysis (EDX) and we report on an exceptional selectivity for ammonia with an average sensor response of 3496.67 mV by all the sensors, when fabricated using different matrix-additive ratios. This result is superior to what is observed for Pure- PANI sensors that were selective only to methanol and ethanol. The addition of ZnO in the smallest fraction, already offers a broader range of selectivity, e.g., PANI/ZnO 90:10 sensor was selective to formaldehyde as assessed using pattern recognition.

SELECTION OF CITATIONS
SEARCH DETAIL
...