Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Polymers (Basel) ; 15(15)2023 Aug 03.
Article in English | MEDLINE | ID: mdl-37571177

ABSTRACT

This study describes the preparation and evaluation of phenol-furfural resin (PFR) from bagasse and its nanocomposites for electrically conductive adhesive (ECA) application. PFR was prepared with furfural extracted from bagasse using a modified acid digestion method. Three different formulations of PFR nanocomposites with conductive nanoparticles, i.e., PFR-silver, PFR-graphite, and PFR-silver + graphite, were prepared using 20, 40, and 60 w/w% of fillers via the impregnation method. The resultant products were characterized using FT-IR, SEM, EDS, and XRD spectroscopy. Electrical conductivity was measured using a four-probe technique, while band gap was calculated via Tauc plots. The results exhibited a significant rise in electrical conductivity of insulating virgin PFR from 2.6 × 10-4 Scm-1 to 8.2 × 10-1 Scm-1 with a 40 and 20 w/w% blend of Ag and graphite in PFR. This synergism was exhibited because graphite and Ag NPs supply excellent junctions for building networks. Both tend to coalesce due to van der Waals forces and high surface energies. Therefore, conductive pathway numbers can be increased, and the contact area can be effectively enlarged. This ternary composite exhibited the lowest bandgap energy value, i.e., 3.1 eV. Thermogravimetric temperature values T0 and Tdeg were increased up to 120 °C and 484 °C, respectively, showing a significant increase in thermal stability. Therefore, the resultant nanocomposite material has good potential to be employed as an ECA in the electronic industry.

2.
Polymers (Basel) ; 12(7)2020 Jul 14.
Article in English | MEDLINE | ID: mdl-32674509

ABSTRACT

This research endeavour aimed to explore the potential of a native, nonedible and low market value plant feedstock, i.e., Saccharum munja for green synthesis of woodware materials and improve its features by incorporating an economical blending material. A significant amount of furfural, i.e., 58%, was extracted from Saccharum munja through the modified acid digestion method. Extracted furfural was reacted with phenol to prepare phenol-furfural resin, an alternative to phenol-formaldehyde resin but with no harmful effects for humans. The synthesized resin was also blended with montmorillonite clay after modification via Dimethyl Sulfoxide (DMSO) treatment for improved thermo-mechanical properties. These resins and composites were characterized by XRD, SEM, and FTIR spectroscopy. Resultant resins and composites were further employed as a binding agent to make high-pressure composite from leftover plant residue by hot-press method. The resultant product was subjected to TGA analysis and furnished high value of degradation temperature (Tdeg), i.e., 607 °C. Prepared high-pressure composite samples were mechanically tested through compression tests by Tinius Olsen Testing Machine and hardness tests by Rockwell Hardness Tester. Its tensile strength value was 58.3 MPa while hardness value was found to be 64 RHB which was greater than mild copper with hardness value 48.9 RHB. Thus, green high-pressure composite material was successfully developed by employing Saccharum munja and montmorillonite clay while no toxic resin was used, nor was any residue left over.

SELECTION OF CITATIONS
SEARCH DETAIL
...