Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Nanomaterials (Basel) ; 12(23)2022 Nov 23.
Article in English | MEDLINE | ID: mdl-36500766

ABSTRACT

The use of nanofluids is showing promise as an enhanced oil recovery (EOR) method. Several reviews have been published focusing on the main mechanisms involved in the process. This new study, unlike previous works, aims to collect information about the most promising nano-EOR methods according to their performance in core-flooding tests. As its main contribution, it presents useful information for researchers interested in experimental application of nano-EOR methods. Additional recoveries (after brine flooding) up to 15% of the original oil in place, or higher when combined with smart water or magnetic fields, have been found with formulations consisting of simple nanoparticles in water or brine. The functionalization of nanoparticles and their combination with surfactants and/or polymers take advantage of the synergy of different EOR methods and can lead to higher additional recoveries. The cost, difficulty of preparation, and stability of the formulations have to be considered in practical applications. Additional oil recoveries shown in the reviewed papers encourage the application of the method at larger scales, but experimental limitations could be offering misleading results. More rigorous and systematic works are required to draw reliable conclusions regarding the best type and size of nanoparticles according to the application (type of rock, permeability, formation brine, reservoir conditions, other chemicals in the formulation, etc.).

2.
Appl Biochem Biotechnol ; 172(1): 131-40, 2014 Jan.
Article in English | MEDLINE | ID: mdl-24052335

ABSTRACT

In this work, capability of the green microalga (MA), Chlorella vulgaris, in treating synthetic anaerobic effluent of municipal wastewater was investigated. While pure C. vulgaris (100 % MA) provided maximum soluble chemical oxygen demand (sCOD) and N-NH4(+) removal efficiencies of 27 and 72 % respectively, addition of activated sludge (AS) to MA in different mass ratios (91, 80, 66.7, 9 % MA) improved wastewater treatment efficiency. Thus giving maximum sCOD and N-NH4(+) removal efficiencies 85 and 86.3 % (for MA/AS = 10/1), respectively. Utilizing AS without C. vulgaris, for treating the synthetic wastewater resulted in 87 % maximum sCOD and 42 % maximum N-NH4(+) removal efficiencies. Furthermore, algal growth and specific growth rates were measured in the systems with microalga as the dominant cellular population. As a result, faster algal growth was observed in mixed systems. Specific growth rate of C. vulgaris was 0.14 (day(-1)) in 100 % MA and 0.39 (day(-1)) in 80 % MA. Finally, data gathered by online measurement of dissolved oxygen indicate that algae-activated sludge mixture improves photosynthetic activity of examined microalga strain during anaerobic effluent treatment.


Subject(s)
Chlorella vulgaris/metabolism , Cities , Microalgae/metabolism , Sewage/microbiology , Waste Disposal, Fluid/methods , Wastewater/microbiology , Ammonia/isolation & purification , Ammonia/metabolism , Anaerobiosis , Chlorella vulgaris/growth & development , Microalgae/growth & development , Oxygen/chemistry , Oxygen/isolation & purification , Oxygen/metabolism , Solubility
SELECTION OF CITATIONS
SEARCH DETAIL
...