Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
J Res Med Sci ; 28: 74, 2023.
Article in English | MEDLINE | ID: mdl-38152072

ABSTRACT

Background: The use of probiotics in the treatment of infertility is a new area of research. In this study, our objective was to examine the efficacy of probiotic supplementation on semen parameters following varicocelectomy. Materials and Methods: We included infertile men in our study who were the candidates for subinguinal microscopic varicocelectomy. After the surgical procedure, the patients were randomly assigned into two groups: 38 individuals received probiotic supplementation (FamiLact®), while 40 individuals received a placebo for 3 months. We compared the preoperative semen parameters with the postoperative parameters to evaluate the effects of probiotic supplementation. Results: A total of 78 patients were included in the study. The two groups were similar in terms of age, body mass index, infertility period, and semen parameters at baseline (P > 0.05). A statistically significant difference was found in sperm concentration (33.7 ± 22.5 vs. 21.1 ± 16.1 × 106/mL, P = 0.046), and the percentage of sperms with normal morphology (15.0 ± 8.9 vs. 12.0 ± 11.5, P = 0.016) at 3 months favoring the probiotic group. Although the probiotic group exhibited higher values for semen volume and sperm motility at 3 months, the differences were not statistically significant (P = 0.897 and P = 0.177, respectively). Conclusion: Our study demonstrates that the short-term use of probiotics after varicocelectomy can provide additional benefits in improving semen parameters. Probiotic supplements are cost-effective and well tolerated, making them a suitable option for enhancing the outcomes of varicocelectomy.

2.
J Res Med Sci ; 27: 17, 2022.
Article in English | MEDLINE | ID: mdl-35342442

ABSTRACT

Background: The present study was performed to investigate and compare renal functions of single-kidney patients after 12 h of percutaneous nephrolithotomy (PCNL) surgery through assessing major markers of renal function with focus on serum level of cystatin that performs a consistent accuracy in various conditions. Materials and Methods: This pilot quasi-experimental study was done on 92 patients with single kidney having staghorn calculus who had undergone PCNL and were referred to the Al-Zahra Hospital, Isfahan, Iran, during 2019-2021. Serum levels of cystatin C, creatinine, estimated glomerular filtration rate (eGFR), and neutrophil gelatinase-associated lipocalin (NGAL) urine level were evaluated before and 12 h after surgery. Results: The mean cystatin C decreased significantly 1.58 ± 0.55 versus mg/L 1.46 ± 0.52 after 12 h after surgery (P < 0.001). Furthermore, the mean levels of creatinine (2.04 ± 0.71 vs. 1.89 ± 0.60 mg/dL) and NGAL (39.72 ± 12.87 vs. 24.05 ± 10.89 µg/ml) were decreased significantly after 12 h of procedure (P < 0.05) while the mean eGFR (57.62 ± 27.59 vs. 64.68 ± 31.88 ml/min/1.73 m2) was increased significantly after 12 h (P < 0.001). Conclusion: Due to significant improvement in all markers of renal after PCNL, this procedure can be considered a potentially effective and safe approach for treating large stone in single-kidney patients.

3.
Nat Mater ; 21(2): 228-236, 2022 02.
Article in English | MEDLINE | ID: mdl-34795402

ABSTRACT

Zwitterionic materials can exhibit unique characteristics and are highly tunable by variation to the covalently bound cationic and anionic moieties. Despite the breadth of properties and potential uses reported to date, for electrolyte applications they have thus far primarily been used as additives or for making polymer gels. However, zwitterions offer intriguing promise as electrolyte matrix materials that are non-volatile and charged but non-migrating. Here we report a family of zwitterions that exhibit molecular disorder and plasticity, which allows their use as a solid-state conductive matrix. We have characterized the thermal, morphological and structural properties of these materials using techniques including differential scanning calorimetry, scanning electron microscopy, solid-state NMR and X-ray crystallography. We report the physical and transport properties of zwitterions combined with lithium salts and a lithium-functionalized polymer to form solid or high-salt-content liquid electrolytes. We demonstrate that the zwitterion-based electrolytes can allow high target ion transport and support stable lithium metal cell cycling. The ability to use disordered zwitterionic materials as electrolyte matrices for high target ion conduction, coupled with an extensive scope for varying the chemical and physical properties, has important implications for the future design of non-volatile materials that bridge the choice between traditional molecular and ionic solvent systems.


Subject(s)
Electric Power Supplies , Lithium , Electric Conductivity , Electrolytes/chemistry , Lithium/chemistry , Solvents/chemistry
4.
Chempluschem ; 83(7): 658-668, 2018 Jul.
Article in English | MEDLINE | ID: mdl-31950640

ABSTRACT

The reaction of [FeII (L. )2 ](BF4 )2 with Li2 TCNQF4 results in the formation of [FeIII (L- )2 ][TCNQF4 . - ] (1) where L. is the radical ligand, 4,4-dimethyl-2,2-di(2-pyridyl)oxazolidine-N-oxide and TCNQF4 is 2,3,5,6-tetrafluoro-7,7,8,8-tetracyanoquinodimethane. This has been characterised by X-ray diffraction, Raman and Fourier transform infrared (FTIR) spectroscopy, variable-temperature magnetic susceptibility, Mössbauer spectroscopy and electrochemistry. X-ray diffraction studies, magnetic susceptibility measurements and Raman and FTIR spectroscopy suggest the presence of low-spin FeIII ions, the anionic form (L- ) of the ligand and the anionic radical form of TCNQF4 ; viz. TCNQF4 . - . Li2 TCNQF4 reduces the [FeII (L. )2 ]2+ dication, which undergoes a reductively induced oxidation to form the [FeIII (L- )2 ]+ monocation resulting in the formation of [FeIII (L- )2 ][TCNQF4 . - ] (1), the electrochemistry of which revealed four well-separated, diffusion-controlled, one-electron, reversible processes. Mössbauer spectroscopy and electrochemical measurements suggest the presence of a minor second species, likely to be [FeII (L. )2 ][TCNQF4 2- ].

5.
Inorg Chem ; 53(10): 5055-66, 2014 May 19.
Article in English | MEDLINE | ID: mdl-24805925

ABSTRACT

Two oxazolidine nitroxide complexes of cobalt(II), [Co(II)(L(•))2](B(C6F5)4)2·CH2Cl2 (1) and [Co(II)(L(•))2](B(C6F5)4)2·2Et2O (2), where, L(•) is the tridentate chelator 4,4-dimethyl-2,2-bis(2-pyridyl)oxazolidine N-oxide, have been investigated by crystallographic, magnetic, reflectivity, and theoretical (DFT) methods. This work follows on from a related study on [Co(II)(L(•))2](NO3)2 (3), a multifunctional complex that simultaneously displays magnetic exchange, spin crossover, and single molecule magnetic features. Changing the anion and the nature of solvation in the present crystalline species leads to significant differences, not only between 1 and 2 but also in comparison to 3. Structural data at 123 and 273 K, in combination with magnetic data, show that at lower temperatures 1 displays low-spin Co(II)-to-radical exchange with differences in fitted J values in comparison to DFT (broken symmetry) calculated J values ascribed to the sensitive influence of a tilt angle (θ) formed between the Co(dz(2)) and the trans-oriented O atoms of the NO radical moieties in L(•). Spin crossover in 1 is evident at higher temperatures, probably influenced by the solvate molecules and crystal packing arrangement. Complex 2 remains in the high-spin Co(II) state between 2 and 350 K and undergoes antiferromagnetic exchange between Co-radical and radical-radical centers, but it is difficult to quantify. Calculations of the magnetic orbitals, eigenvalue plots, and the spin densities at the Co and radical sites in 1 and 2 have yielded satisfying details on the mechanism of metal-radical and radical-radical exchange, the radical spins being in π*NO orbitals.


Subject(s)
Chelating Agents/chemistry , Cobalt/chemistry , Coordination Complexes/chemistry , Chelating Agents/chemical synthesis , Coordination Complexes/chemical synthesis , Molecular Structure , Quantum Theory , Solubility
6.
Inorg Chem ; 52(13): 7557-72, 2013 Jul 01.
Article in English | MEDLINE | ID: mdl-23777336

ABSTRACT

The reaction of [Co(II)(NO3)2]·6H2O with the nitroxide radical, 4-dimethyl-2,2-di(2-pyridyl) oxazolidine-N-oxide (L(•)), produces the mononuclear transition-metal complex [Co(II)(L(•))2](NO3)2 (1), which has been investigated using temperature-dependent magnetic susceptibility, electron paramagnetic resonance (EPR) spectroscopy, electrochemistry, density functional theory (DFT) calculations, and variable-temperature X-ray structure analysis. Magnetic susceptibility measurements and X-ray diffraction (XRD) analysis reveal a central low-spin octahedral Co(2+) ion with both ligands in the neutral radical form (L(•)) forming a linear L(•)···Co(II)···L(•) arrangement. This shows a host of interesting magnetic properties including strong cobalt-radical and radical-radical intramolecular ferromagnetic interactions stabilizing a S = (3)/2 ground state, a thermally induced spin crossover transition above 200 K and field-induced slow magnetic relaxation. This is supported by variable-temperature EPR spectra, which suggest that 1 has a positive D value and nonzero E values, suggesting the possibility of a field-induced transverse anisotropy barrier. DFT calculations support the parallel alignment of the two radical π*NO orbitals with a small orbital overlap leading to radical-radical ferromagnetic interactions while the cobalt-radical interaction is computed to be strong and ferromagnetic. In the high-spin (HS) case, the DFT calculations predict a weak antiferromagnetic cobalt-radical interaction, whereas the radical-radical interaction is computed to be large and ferromagnetic. The monocationic complex [Co(III)(L(-))2](BPh4) (2) is formed by a rare, reductively induced oxidation of the Co center and has been fully characterized by X-ray structure analysis and magnetic measurements revealing a diamagnetic ground state. Electrochemical studies on 1 and 2 revealed common Co-redox intermediates and the proposed mechanism is compared and contrasted with that of the Fe analogues.

SELECTION OF CITATIONS
SEARCH DETAIL
...