Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Type of study
Language
Publication year range
1.
Plant Biol (Stuttg) ; 25(6): 902-914, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37641387

ABSTRACT

Studies on plant responses to combined abiotic stresses are very limited, especially in major crop plants. The current study evaluated the response of chorismate mutase overexpressor (OxCM) rice line to combined UV light and drought stress. The experiments were conducted in pots in a growth chamber, and data were assessed for gene expression, antioxidant and hormone regulation, flavonoid accumulation, phenotypic variation, and amino acid accumulation. Wild-type (WT) rice had reduced the growth and vigour, while transgenic rice maintained growth and vigour under combined UV light and drought stress. ROS and lipid peroxidation analysis revealed that chorismate mutase (OsCM) reduced oxidative stress mediated by ROS scavenging and reduced lipid peroxidation. The combined stresses reduced biosynthesis of total flavonoids, kaempferol and quercetin in WT plants, but increased significantly in plants with OxCM. Phytohormone analysis showed that SA was reduced by 50% in WT and 73% in transgenic plants, while ABA was reduced by 22% in WT plants but increased to 129% in transgenic plants. Expression of chorismate mutase regulates phenylalanine biosynthesis, UV light and drought stress-responsive genes, e.g., phenylalanine ammonia lyase (OsPAL), dehydrin (OsDHN), dehydration-responsive element-binding (OsDREB), ras-related protein 7 (OsRab7), ultraviolet-B resistance 8 (OsUVR8), WRKY transcription factor 89 (OsWRKY89) and tryptophan synthase alpha chain (OsTSA). Moreover, OsCM also increases accumulation of free amino acids (aspartic acid, glutamic acid, leucine, tyrosine, phenylalanine and proline) and sodium (Na), potassium (K), and calcium (Ca) ions in response to the combined stresses. Together, these results suggest that chorismate mutase expression induces physiological, biochemical and molecular changes that enhance rice tolerance to combined UV light and drought stresses.


Subject(s)
Oryza , Oryza/genetics , Droughts , Reactive Oxygen Species , Ultraviolet Rays , Amino Acids , Chorismate Mutase , Flavonoids
2.
Plant Biol (Stuttg) ; 22(5): 850-862, 2020 Sep.
Article in English | MEDLINE | ID: mdl-32329163

ABSTRACT

Salt stress negatively affects growth and development of plants. However, it is hypothesized that plant growth-promoting endophytic bacteria can greatly alleviate the adverse effects of salinity and can promote growth and development of plants. In the present research, we aimed to isolate endophytic bacteria from halotolerant plants and evaluate their capacity for promoting crop plant growth. The bacterial endophytes were isolated from selected plants inhabiting sand dunes at Pohang beach, screened for plant growth-promoting traits and applied to rice seedlings under salt stress (NaCl; 150 mm). Out of 59 endophytic bacterial isolates, only six isolates, i.e. Curtobacterium oceanosedimentum SAK1, Curtobacterium luteum SAK2, Enterobacter ludwigii SAK5, Bacillus cereus SA1, Micrococcus yunnanensis SA2, Enterobacter tabaci SA3, resulted in a significant increase in the growth of Waito-C rice. The cultural filtrates of bacterial endophytes were tested for phytohormones, including indole-3-acetic acid, gibberellins and organic acids. Inoculation of the selected strains considerably reduced the amount of endogenous ABA in rice plants under NaCl stress, however, they increased GSH and sugar content. Similarly, these strains augmented the expression of flavin monooxygenase (OsYUCCA1) and auxin efflux carrier (OsPIN1) genes under salt stress. In conclusion, the pragmatic application of the above selected bacterial strains alleviated the adverse effects of NaCl stress and enhanced rice growth attributes by producing various phytohormones.


Subject(s)
Bacterial Physiological Phenomena , Endophytes , Oryza , Salt Tolerance , Actinobacteria/physiology , Endophytes/physiology , Enterobacter/physiology , Micrococcus/physiology , Oryza/microbiology , Plant Roots/microbiology , Salt Tolerance/physiology
3.
Reprod Fertil Dev ; 2015 Apr 20.
Article in English | MEDLINE | ID: mdl-25891636

ABSTRACT

Subclinical chronic mastitis was induced to examine the effects on oocyte developmental competence. Uninfected Holstein cows were intramammary administrated with serial (every 48h for 20 days) low doses of toxin of Staphylococcus aureus origin (Gram-positive; G+), endotoxin of Escherichia coli origin (Gram-negative; G-) or sterile saline (control). Follicular fluid of toxin- and saline-treated cows was aspirated from preovulatory follicles and used as maturation medium. Oocytes harvested from ovaries collected at the abattoir were matured and then fertilised and cultured for 8 days. The percentage of oocytes undergoing nuclear maturation, determined by meiotic nuclear stages, did not differ between groups. Cytoplasmic maturation, determined by cortical granule distribution, was affected by both toxins (PPPPTGS2) mRNA increased, whereas that of growth differentiation factor 9 (GDF9) decreased in matured oocytes. In addition, PTGS2 expression increased and POU class 5 homeobox 1 (POU5F1) expression decreased in 4-cell embryos developed from both G+ and G- oocytes. Thus, regardless of toxin type, subclinical mastitis disrupts oocyte cytoplasmic maturation and alters gene expression in association with reduced developmental competence.

4.
Reproduction ; 147(1): 33-43, 2014 Jan.
Article in English | MEDLINE | ID: mdl-24129150

ABSTRACT

Mastitis is associated with decreased fertility in dairy cows. In the current study, we created an experimental model to simulate short-term mastitis by a single intramammary administration of Gram-negative endotoxin of Escherichia coli origin (G-), or Gram-positive toxin of Staphylococcus aureus origin (G+), to examine the effect of mastitis on oocyte developmental competence. Healthy Holstein cows were synchronized, and follicular fluid (FF) of cows treated with G+ or G- and of uninfected cows (controls) was aspirated from the preovulatory follicles by transvaginal ultrasound procedure. The aspirated FF was used as maturation medium for in vitro embryo production. The distribution of matured oocytes into different cortical granule classes and meiotic stages was affected by G- administration (P<0.05) but not by G+ administration. The proportion of oocytes that cleaved to two- and four-cell stage embryos (44 h postfertilization) was lower in both G+ and G- groups than in controls (P<0.05). Blastocyst formation rate (7-8 days postfertilization) was lower in the G- group (P<0.05) and numerically lower in the G+ group compared with their uninfected counterparts. The total cell number in blastocysts did not differ among groups; however, the apoptotic index was higher in the G+ group (P<0.05), but not in the G- group, relative to controls. Examining mRNA relative abundance in oocytes and early embryos revealed mastitis-induced alterations in PTGS2 (COX2), POU5F1, and HSF1 but not in SLC2A1 (GLUT1) or GDF9. Results indicate a differential disruptive effect of mastitis induced by G- and G+ on oocyte developmental competence in association with alterations in maternal gene expression.


Subject(s)
Lactation/physiology , Mastitis/physiopathology , Oocytes/physiology , Animals , Blastocyst/metabolism , Cattle , Escherichia coli , Female , Gene Expression , Lactation/metabolism , Mastitis/microbiology , Oocytes/metabolism , Oocytes/microbiology , Staphylococcus aureus
SELECTION OF CITATIONS
SEARCH DETAIL
...