Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Nature ; 571(7766): 555-559, 2019 07.
Article in English | MEDLINE | ID: mdl-31308535

ABSTRACT

Water strongly influences the physical properties of the mantle and enhances its ability to melt or convect. Its presence can also be used to trace recycling of surface reservoirs down to the deep mantle1, which makes knowledge of the water content in the Earth's interior and its evolution crucial for understanding global geodynamics. Komatiites (MgO-rich ultramafic magmas) result from a high degree of mantle melting at high pressures2 and thus are excellent probes of the chemical composition and water contents of the deep mantle. An excess of water over elements that show similar geochemical behaviour during mantle melting (for example, cerium) was recently found in melt inclusions in the most magnesium-rich olivine in 2.7-billion-year-old komatiites from Canada3 and Zimbabwe4. These data were taken as evidence for a deep hydrated mantle reservoir, probably the transition zone, in the Neoarchaean era (2.8 to 2.5 billion years ago). Here we confirm the mantle source of this water by measuring deuterium-to-hydrogen ratios in these melt inclusions and present similar data for 3.3-billion-year-old komatiites from the Barberton greenstone belt. From the hydrogen isotope ratios, we show that the mantle sources of these melts contained excess water, which implies that a deep hydrous mantle reservoir has been present in the Earth's interior since at least the Palaeoarchaean era (3.6 to 3.2 billion years ago). The reconstructed initial hydrogen isotope composition of komatiites is more depleted in deuterium than surface reservoirs or typical mantle but resembles that of oceanic crust that was initially altered by seawater and then dehydrated during subduction. Together with an excess of chlorine and depletion of lead in the mantle sources of komatiites, these results indicate that seawater-altered lithosphere recycling into the deep mantle, arguably by subduction, started before 3.3 billion years ago.

2.
Nature ; 531(7596): 628-32, 2016 Mar 31.
Article in English | MEDLINE | ID: mdl-27029278

ABSTRACT

Archaean komatiites (ultramafic lavas) result from melting under extreme conditions of the Earth's mantle. Their chemical compositions evoke very high eruption temperatures, up to 1,600 degrees Celsius, which suggests even higher temperatures in their mantle source. This message is clouded, however, by uncertainty about the water content in komatiite magmas. One school of thought holds that komatiites were essentially dry and originated in mantle plumes while another argues that these magmas contained several per cent water, which drastically reduced their eruption temperature and links them to subduction processes. Here we report measurements of the content of water and other volatile components, and of major and trace elements in melt inclusions in exceptionally magnesian olivine (up to 94.5 mole per cent forsterite). This information provides direct estimates of the composition and crystallization temperature of the parental melts of Archaean komatiites. We show that the parental melt for 2.7-billion-year-old komatiites from the Abitibi greenstone belt in Canada contained 30 per cent magnesium oxide and 0.6 per cent water by weight, and was depleted in highly incompatible elements. This melt began to crystallize at around 1,530 degrees Celsius at shallow depth and under reducing conditions, and it evolved via fractional crystallization of olivine, accompanied by minor crustal assimilation. As its major- and trace-element composition and low oxygen fugacities are inconsistent with a subduction setting, we propose that its high H2O/Ce ratio (over 6,000) resulted from entrainment into the komatiite source of hydrous material from the mantle transition zone. These results confirm a plume origin for komatiites and high Archaean mantle temperatures, and evoke a hydrous reservoir in the deep mantle early in Earth's history.

SELECTION OF CITATIONS
SEARCH DETAIL
...