Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
J Neurosci Methods ; 385: 109764, 2023 02 01.
Article in English | MEDLINE | ID: mdl-36476748

ABSTRACT

BACKGROUND: The brain-machine interface is a technology that has been used for improving the quality of life of individuals with physical disabilities and also healthy individuals. It is important to improve the methods used for decoding the brain-machine interface data as the accuracy and speed of movements achieved using the existing technology are not comparable to the normal body. COMPARISON WITH THE EXISTING METHOD: Decoding of brain-machine interface data using the proposed method resulted in improved decoding accuracy compared to the existing method. CONCLUSIONS: The results demonstrated the usefulness of cell assembly state estimation method for decoding the brain-machine interface data. NEW METHOD: We incorporated a novel method of estimating cell assembly states using spike trains with the existing decoding method that used only firing rate data. Synaptic connectivity pattern was used as feature values in addition to firing rate. Publicly available monkey brain-machine interface datasets were used in the study. RESULTS: As long as the decoding was successful, the root mean square error of the proposed method was significantly smaller than the existing method. Artificial neural netowork-based decoding method resulted in more stable decoding, and also improved the decoding accuracy due to incorporation of synaptic connectivity pattern.


Subject(s)
Brain-Computer Interfaces , Animals , Haplorhini , Quality of Life , Movement , Action Potentials
2.
Front Neurosci ; 16: 873664, 2022.
Article in English | MEDLINE | ID: mdl-35677356

ABSTRACT

Brain-state alternation is important for long-term memory formation. Each brain state can be identified with a specific process in memory formation, e.g., encoding during wakefulness or consolidation during sleeping. The hippocampal-neocortical dialogue was proposed as a hypothetical framework for systems consolidation, which features different cross-frequency couplings between the hippocampus and distributed neocortical regions in different brain states. Despite evidence supporting this hypothesis, little has been reported about how information is processed with shifts in brain states. To address this gap, we developed an in vitro neocortical-hippocampal coculture model to study how activity coupling can affect connections between coupled networks. Neocortical and hippocampal neurons were cultured in two different compartments connected by a micro-tunnel structure. The network activity of the coculture model was recorded by microelectrode arrays underlying the substrate. Rhythmic bursting was observed in the spontaneous activity and electrical evoked responses. Rhythmic bursting activity in one compartment could couple to that in the other via axons passing through the micro-tunnels. Two types of coupling patterns were observed: slow-burst coupling (neocortex at 0.1-0.5 Hz and hippocampus at 1 Hz) and fast burst coupling (neocortex at 20-40 Hz and hippocampus at 4-10 Hz). The network activity showed greater synchronicity in the slow-burst coupling, as indicated by changes in the burstiness index. Network synchronicity analysis suggests the presence of different information processing states under different burst activity coupling patterns. Our results suggest that the hippocampal-neocortical coculture model possesses multiple modes of burst activity coupling between the cortical and hippocampal parts. With the addition of external stimulation, the neocortical-hippocampal network model we developed can elucidate the influence of state shifts on information processing.

3.
Front Neurosci ; 16: 854637, 2022.
Article in English | MEDLINE | ID: mdl-35509449

ABSTRACT

Myelinated fibers are specialized neurological structures used for conducting action potentials quickly and reliably, thus assisting neural functions. Although demyelination leads to serious functional impairments, little is known the relationship between myelin structural change and increase in conduction velocity during myelination and demyelination processes. There are no appropriate methods for the long-term evaluation of spatial characteristics of saltatory conduction along myelinated axons. Herein, we aimed to detect saltatory conduction from the peripheral nervous system neurons using a high-density microelectrode array. Rat sensory neurons and intrinsic Schwann cells were cultured. Immunofluorescence and ultrastructure examination showed that the myelinating Schwann cells appeared at 1 month, and compact myelin was formed by 10 weeks in vitro. Activity of rat sensory neurons was evoked with optogenetic stimulation, and axon conduction was detected with high-density microelectrode arrays. Some conductions included high-speed segments with low signal amplitude. The same segment could be detected with electrical recording and immunofluorescent imaging for a myelin-related protein. The spatiotemporal analysis showed that some segments show a velocity of more than 2 m/s and that ends of the segments show a higher electrical sink, suggesting that saltatory conduction occurred in myelinated axons. Moreover, mathematical modeling supported that the recorded signal was in the appropriate range for axon and electrode sizes. Overall, our method could be a feasible tool for evaluating spatial characteristics of axon conduction including saltatory conduction, which is applicable for studying demyelination and remyelination.

4.
IEEE Trans Biomed Eng ; 69(4): 1524-1532, 2022 04.
Article in English | MEDLINE | ID: mdl-34727019

ABSTRACT

Cell assemblies are difficult to observe because they consist of many neurons. We aimed to observe cell assemblies based on biological statistics, such as synaptic connectivity. We developed an estimation method to estimate the activity and synaptic connectivity of cell assemblies from spike trains using mathematical models of individual neurons and cell assemblies. Synaptic transmissions were averaged to generate postsynaptic currents with the same timing and waveform but different amplitudes, as the number of presynaptic neurons was large. We estimated the average synaptic transmission and synaptic connectivity from active cell assemblies based on the stochastic prediction of membrane potentials and verified the estimation ability of the average synaptic transmission and synaptic connectivity using the proposed method on simulated neural activity. Different cell assembly activities evoked by electrical stimuli were correctly sorted into various clusters in experiments using rat cortical neurons cultured on microelectrode arrays. We observed multiple cell assemblies from the spontaneous activity of rat cortical networks on microelectrode arrays, based on the synaptic connectivity patterns estimated by the proposed method. The proposed method was superior to the conventional method for detecting the activity of multiple cell assemblies. Using the proposed method, it is possible to observe multiple cell assemblies based on the biological basis of synaptic connectivity. In summary, we report a novel method to observe cell assemblies from spike train recordings based on the biological basis of synaptic connectivity, rather than merely relying on a statistical method.


Subject(s)
Models, Neurological , Neurons , Action Potentials/physiology , Animals , Neurons/physiology , Rats
5.
Front Neurosci ; 13: 890, 2019.
Article in English | MEDLINE | ID: mdl-31555074

ABSTRACT

Neuroengineering methods can be effectively used in the design of new approaches to treat central nervous system and brain injury caused by neurotrauma, ischemia, or neurodegenerative disorders. During the last decade, significant results were achieved in the field of implant (scaffold) development using various biocompatible and biodegradable materials carrying neuronal cells for implantation into the injury site of the brain to repair its function. Neurons derived from animal or human induced pluripotent stem (iPS) cells are expected to be an ideal cell source, and induction methods for specific cell types have been actively studied to improve efficacy and specificity. A critical goal of neuro-regeneration is structural and functional restoration of the injury site. The target treatment area has heterogeneous and complex network topology with various types of cells that need to be restored with similar neuronal network structure to recover correct functionality. However, current scaffold-based technology for brain implants operates with homogeneous neuronal cell distribution, which limits recovery in the damaged area of the brain and prevents a return to fully functional biological tissue. In this study, we present a neuroengineering concept for designing a neural circuit with a pre-defined unidirectional network architecture that provides a balance of excitation/inhibition in the scaffold to form tissue similar to that in the injured area using various types of iPS cells. Such tissue will mimic the surrounding niche in the injured site and will morphologically and topologically integrate into the brain, recovering lost function.

SELECTION OF CITATIONS
SEARCH DETAIL
...