Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Front Microbiol ; 14: 1202357, 2023.
Article in English | MEDLINE | ID: mdl-37405159

ABSTRACT

We characterized 118 Mycoplasma pneumoniae strains isolated from three areas of Japan (Saitama, Kanagawa, and Osaka) during the period of 2019 and 2020. Genotyping of the p1 gene in these strains revealed that 29 of them were type 1 lineage (29/118, 24.6%), while 89 were type 2 lineage (89/118, 75.4%), thereby indicating that type 2 lineage was dominant in this period. The most prevalent variant of type 2 lineage was type 2c (57/89, 64%), while the second-most was type 2j, a novel variant identified in this study (30/89, 33.7%). Type 2j p1 is similar to type 2 g p1, but cannot be distinguished from reference type 2 (classical type 2) using the standard polymerase chain reaction-restriction fragment length polymorphism analysis (PCR-RFLP) with HaeIII digestion. Thus, we used MboI digestion in the PCR-RFLP analysis and re-examined the data from previous genotyping studies as well. This revealed that most strains reported as classical type 2 after 2010 in our studies were actually type 2j. The revised genotyping data showed that the type 2c and 2j strains have been spreading in recent years and were the most prevalent variants in Japan during the time-period of 2019 and 2020. We also analyzed the macrolide-resistance (MR) mutations in the 118 strains. MR mutations in the 23S rRNA gene were detected in 29 of these strains (29/118, 24.6%). The MR rate of type 1 lineage (14/29, 48.3%) was still higher than that of type 2 lineage (15/89, 16.9%); however, the MR rate of type 1 lineage was lower than that found in previous reports published in the 2010s, while that of type 2 lineage strains was slightly higher. Thus, there is a need for continuous surveillance of the p1 genotype and MR rate of M. pneumoniae clinical strains, to better understand the epidemiology and variant evolution of this pathogen, although M. pneumoniae pneumonia cases have decreased significantly since the COVID-19 pandemic.

3.
Sci Rep ; 10(1): 13496, 2020 08 11.
Article in English | MEDLINE | ID: mdl-32782312

ABSTRACT

Influenza virus, respiratory syncytial virus, and human metapneumovirus commonly cause acute upper and lower respiratory tract infections, especially in children and the elderly. Although rapid antigen detection tests for detecting these infections have been introduced recently, these are less sensitive than nucleic acid amplification tests. More recently, highly sensitive point-of-care testings (POCTs) have been developed based on nucleic acid amplification tests, which are easy to use in clinical settings. In this study, loop-mediated isothermal amplification (LAMP)-based POCT "Simprova" to detect influenza A and B viruses, respiratory syncytial virus, and human metapneumovirus was developed. Simprova system is fully automated and does not require skilled personnel. In addition, positive results can be achieved faster than with PCR. In this study, the accuracy of the POCT was retrospectively analyzed using 241 frozen stocked specimens. Additionally, the usability of the Simprova at clinical sites was assessed in a prospective clinical study using 380 clinical specimens and compared to those of real-time PCR and rapid antigen detection test. The novel LAMP-based POCT demonstrated high sensitivity and specificity in characterizing clinical specimens from patients with influenza-like illnesses. The Simprova is a powerful tool for early diagnosis of respiratory viral infections in point-of-care settings.


Subject(s)
Metapneumovirus/isolation & purification , Molecular Diagnostic Techniques/methods , Nucleic Acid Amplification Techniques/methods , Orthomyxoviridae/isolation & purification , Respiratory Syncytial Viruses/isolation & purification , Adolescent , Automation , Child , Child, Preschool , Female , Humans , Infant , Infant, Newborn , Male , Metapneumovirus/genetics , Orthomyxoviridae/genetics , Respiratory Syncytial Viruses/genetics
4.
PLoS One ; 12(9): e0184335, 2017.
Article in English | MEDLINE | ID: mdl-28902862

ABSTRACT

The first upsurge of enterovirus D68 (EV-D68), a causative agent of acute respiratory infections (ARIs), in Japan was reported in Osaka City in 2010. In this study, which began in 2010, we surveyed EV-D68 in children with ARIs and analyzed sequences of EV-D68 strains detected. Real-time PCR of 19 respiratory viruses or subtypes of viruses, including enterovirus, was performed on 2,215 specimens from ARI patients (<10 years of age) collected between November 2010 and December 2015 in Osaka City, Japan. EV-D68 was identified in 18 enterovirus-positive specimens (n = 4 in 2013, n = 1 in 2014, and n = 13 in 2015) by analysis of viral protein 1 (VP1) or VP4 sequences, followed by a BLAST search for similar sequences. All EV-D68 strains were detected between June and October (summer to autumn), except for one strain detected in 2014. A phylogenetic analysis of available VP1 sequences revealed that the Osaka strains detected in 2010, 2013, and 2015 belonged to distinct clusters (Clades C, A, and B [Subclade B3], respectively). Comparison of the 5' untranslated regions of these viruses showed that Osaka strains in Clades A, B (Subclade B3), and C commonly had deletions at nucleotide positions 681-703 corresponding to the prototype Fermon strain. Clades B and C had deletions from nucleotide positions 713-724. Since the EV-D68 epidemic in 2010, EV-D68 re-emerged in Osaka City, Japan, in 2013 and 2015. Results of this study indicate that distinct clades of EV-D68 contributed to re-emergences of this virus in 2010, 2013, and 2015 in this limited region.


Subject(s)
Enterovirus D, Human/classification , Enterovirus D, Human/genetics , Enterovirus Infections/epidemiology , Enterovirus Infections/virology , Child , Child, Preschool , Communicable Diseases, Emerging/virology , Disease Outbreaks/statistics & numerical data , Female , Humans , Infant , Infant, Newborn , Japan/epidemiology , Male , Phylogeny , Respiratory Tract Infections/virology , Sequence Analysis, DNA , Urbanization , Viral Structural Proteins/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...