Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 30
Filter
Add more filters










Publication year range
1.
Plant Physiol ; 193(1): 259-270, 2023 08 31.
Article in English | MEDLINE | ID: mdl-37307565

ABSTRACT

The downy mildew oomycete Hyaloperonospora arabidopsidis, an obligate filamentous pathogen, infects Arabidopsis (Arabidopsis thaliana) by forming structures called haustoria inside host cells. Previous transcriptome analyses have revealed that host genes are specifically induced during infection; however, RNA profiling from whole-infected tissues may fail to capture key transcriptional events occurring exclusively in haustoriated host cells, where the pathogen injects virulence effectors to modulate host immunity. To determine interactions between Arabidopsis and H. arabidopsidis at the cellular level, we devised a translating ribosome affinity purification system using 2 high-affinity binding proteins, colicin E9 and Im9 (immunity protein of colicin E9), applicable to pathogen-responsive promoters, thus enabling haustoriated cell-specific RNA profiling. Among the host genes specifically expressed in H. arabidopsidis-haustoriated cells, we found genes that promote either susceptibility or resistance to the pathogen, providing insights into the Arabidopsis-downy mildew interaction. We propose that our protocol for profiling cell-specific transcripts will apply to several stimulus-specific contexts and other plant-pathogen interactions.


Subject(s)
Arabidopsis , Colicins , Oomycetes , Peronospora , Arabidopsis/genetics , RNA/metabolism , Colicins/metabolism , Host-Pathogen Interactions/genetics , Plant Diseases/genetics
2.
Nat Commun ; 14(1): 3248, 2023 06 05.
Article in English | MEDLINE | ID: mdl-37277361

ABSTRACT

Transposable elements (TEs) are accumulated in both intergenic and intragenic regions in plant genomes. Intragenic TEs often act as regulatory elements of associated genes and are also co-transcribed with genes, generating chimeric TE-gene transcripts. Despite the potential impact on mRNA regulation and gene function, the prevalence and transcriptional regulation of TE-gene transcripts are poorly understood. By long-read direct RNA sequencing and a dedicated bioinformatics pipeline, ParasiTE, we investigated the transcription and RNA processing of TE-gene transcripts in Arabidopsis thaliana. We identified a global production of TE-gene transcripts in thousands of A. thaliana gene loci, with TE sequences often being associated with alternative transcription start sites or transcription termination sites. The epigenetic state of intragenic TEs affects RNAPII elongation and usage of alternative poly(A) signals within TE sequences, regulating alternative TE-gene isoform production. Co-transcription and inclusion of TE-derived sequences into gene transcripts impact regulation of RNA stability and environmental responses of some loci. Our study provides insights into TE-gene interactions that contributes to mRNA regulation, transcriptome diversity, and environmental responses in plants.


Subject(s)
Arabidopsis , Arabidopsis/genetics , Epigenesis, Genetic , Gene Expression Regulation, Plant , DNA Transposable Elements/genetics , RNA, Small Interfering/genetics , RNA, Messenger/genetics , Sequence Analysis, RNA
3.
Nat Commun ; 12(1): 7303, 2021 12 15.
Article in English | MEDLINE | ID: mdl-34911942

ABSTRACT

Nonsteroidal anti-inflammatory drugs (NSAIDs), including salicylic acid (SA), target mammalian cyclooxygenases. In plants, SA is a defense hormone that regulates NON-EXPRESSOR OF PATHOGENESIS RELATED GENES 1 (NPR1), the master transcriptional regulator of immunity-related genes. We identify that the oxicam-type NSAIDs tenoxicam (TNX), meloxicam, and piroxicam, but not other types of NSAIDs, exhibit an inhibitory effect on immunity to bacteria and SA-dependent plant immune response. TNX treatment decreases NPR1 levels, independently from the proposed SA receptors NPR3 and NPR4. Instead, TNX induces oxidation of cytosolic redox status, which is also affected by SA and regulates NPR1 homeostasis. A cysteine labeling assay reveals that cysteine residues in NPR1 can be oxidized in vitro, leading to disulfide-bridged oligomerization of NPR1, but not in vivo regardless of SA or TNX treatment. Therefore, this study indicates that oxicam inhibits NPR1-mediated SA signaling without affecting the redox status of NPR1.


Subject(s)
Anti-Inflammatory Agents, Non-Steroidal/pharmacology , Arabidopsis Proteins/metabolism , Arabidopsis/drug effects , Arabidopsis/metabolism , Piroxicam/analogs & derivatives , Salicylic Acid/metabolism , Arabidopsis/genetics , Arabidopsis Proteins/genetics , Gene Expression Regulation, Plant/drug effects , Meloxicam/pharmacology , Piroxicam/pharmacology
4.
Microbiol Resour Announc ; 10(28): e0040521, 2021 Jul 15.
Article in English | MEDLINE | ID: mdl-34264094

ABSTRACT

Pseudomonas amygdali pv. tabaci strain 6605 is the bacterial pathogen causing tobacco wildfire disease that has been used as a model for elucidating virulence mechanisms. Here, we present the complete genome sequence of P. amygdali pv. tabaci 6605 as a circular chromosome from reads using a PacBio sequencer.

5.
Mol Plant Microbe Interact ; 34(11): 1316-1319, 2021 Nov.
Article in English | MEDLINE | ID: mdl-34289713

ABSTRACT

The soilborne filamentous fungus Fusarium oxysporum causes devastating diseases of many cultivated plant species. F. oxysporum f. sp. raphani and f. sp. rapae are two of four formae speciales that are pathogenic to Brassicaceae plants. Here, we present high-quality genome sequences of F. oxysporum f. sp. raphani strain Tf1262 and F. oxysporum f. sp. rapae strain Tf1208 that were isolated from radish (Raphanus sativus) and turnip (Brassica rapa var. rapa), respectively. These genome resources should facilitate in-depth investigation of interactions between F. oxysporum and Brassicaceae plants, and enable comparative genomics of the F. oxysporum species complex to uncover how pathogenicity evolved within F. oxysporum.[Formula: see text] Copyright © 2021 The Author(s). This is an open access article distributed under the CC BY 4.0 International license.


Subject(s)
Brassicaceae , Fusarium , Fusarium/genetics , Genome, Fungal , Plant Diseases
6.
Commun Biol ; 4(1): 707, 2021 06 09.
Article in English | MEDLINE | ID: mdl-34108627

ABSTRACT

Many plant pathogenic fungi contain conditionally dispensable (CD) chromosomes that are associated with virulence, but not growth in vitro. Virulence-associated CD chromosomes carry genes encoding effectors and/or host-specific toxin biosynthesis enzymes that may contribute to determining host specificity. Fusarium oxysporum causes devastating diseases of more than 100 plant species. Among a large number of host-specific forms, F. oxysporum f. sp. conglutinans (Focn) can infect Brassicaceae plants including Arabidopsis (Arabidopsis thaliana) and cabbage. Here we show that Focn has multiple CD chromosomes. We identified specific CD chromosomes that are required for virulence on Arabidopsis, cabbage, or both, and describe a pair of effectors encoded on one of the CD chromosomes that is required for suppression of Arabidopsis-specific phytoalexin-based immunity. The effector pair is highly conserved in F. oxysporum isolates capable of infecting Arabidopsis, but not of other plants. This study provides insight into how host specificity of F. oxysporum may be determined by a pair of effector genes on a transmissible CD chromosome.


Subject(s)
Chromosomes, Fungal/genetics , Fusarium/genetics , Plant Diseases/microbiology , Arabidopsis/immunology , Arabidopsis/microbiology , Brassicaceae/immunology , Brassicaceae/microbiology , Chromosomes, Fungal/physiology , Fusarium/pathogenicity , Fusarium/physiology , Genome, Fungal/genetics , Host-Pathogen Interactions/immunology , Plant Diseases/immunology
7.
Microbiol Resour Announc ; 8(29)2019 Jul 18.
Article in English | MEDLINE | ID: mdl-31320418

ABSTRACT

Fusarium oxysporum f. sp. cubense is the causal agent of banana Fusarium wilt, also known as Panama disease. Here, we present a high-quality genome sequence of F. oxysporum f. sp. cubense strain 160527. The genome assembly is composed of 12 contigs with a total assembly length of 51,139,495 bp (N 50 contig length, 4,884,632 bp).

8.
Nat Commun ; 10(1): 174, 2019 01 08.
Article in English | MEDLINE | ID: mdl-30622270

ABSTRACT

The original version of this article contained an error in the author affiliations. Oliver J. Furzer was incorrectly associated with Department of Plant Sciences, College of Life Sciences, Wuhan University, 430072, Wuhan, China.This has now been corrected in the HTML version of the article. The PDF version of the article was correct at the time of publication.Furthermore, the original version of this article stated that correspondence and requests for materials should be addressed to Heidelberg.Center.for.Personalized.Oncology, DKFZ-HIPO, DKFZ, Heidelberg 69120Germany S.A. (email: shuta.asai@riken.jp) or to J.D.G.J. (email: jonathan.jones@tsl.ac.uk). The words "Heidelberg.Center.for.Personalized.Oncology, DKFZ-HIPO, DKFZ, Heidelberg 69120Germany" were introduced inadvertently.This has now been corrected in the PDF version of the article. The HTML version of the article was correct at the time of publication.

9.
Nat Commun ; 9(1): 5192, 2018 12 05.
Article in English | MEDLINE | ID: mdl-30518923

ABSTRACT

Pathogen co-evolution with plants involves selection for evasion of host surveillance systems. The oomycete Hyaloperonospora arabidopsidis (Hpa) causes downy mildew on Arabidopsis, and race-specific interactions between Arabidopsis accessions and Hpa isolates fit the gene-for-gene model in which host resistance or susceptibility are determined by matching pairs of plant Resistance (R) genes and pathogen Avirulence (AVR) genes. Arabidopsis Col-0 carries R gene RPP4 that confers resistance to Hpa isolates Emoy2 and Emwa1, but its cognate recognized effector(s) were unknown. We report here the identification of the Emoy2 AVR effector gene recognized by RPP4 and show resistance-breaking isolates of Hpa on RPP4-containing Arabidopsis carry the alleles that either are not expressed, or show cytoplasmic instead of nuclear subcellular localization.


Subject(s)
Arabidopsis/microbiology , Bacterial Proteins/metabolism , Cell Nucleus/metabolism , Cytoplasm/metabolism , Oomycetes/genetics , Oomycetes/metabolism , Plant Diseases/microbiology , Virulence Factors/metabolism , Arabidopsis/genetics , Arabidopsis/metabolism , Arabidopsis Proteins/genetics , Arabidopsis Proteins/metabolism , Bacterial Proteins/genetics , Cell Nucleus/genetics , Cytoplasm/genetics , Host-Pathogen Interactions , Plant Diseases/genetics , Polymorphism, Genetic , Protein Transport , Virulence Factors/genetics
10.
New Phytol ; 220(1): 232-248, 2018 10.
Article in English | MEDLINE | ID: mdl-30156022

ABSTRACT

The oomycete pathogen Hyaloperonospora arabidopsidis (Hpa) causes downy mildew disease on Arabidopsis. To colonize its host, Hpa translocates effector proteins that suppress plant immunity into infected host cells. Here, we investigate the relevance of the interaction between one of these effectors, HaRxL106, and Arabidopsis RADICAL-INDUCED CELL DEATH1 (RCD1). We use pathogen infection assays as well as molecular and biochemical analyses to test the hypothesis that HaRxL106 manipulates RCD1 to attenuate transcriptional activation of defense genes. We report that HaRxL106 suppresses transcriptional activation of salicylic acid (SA)-induced defense genes and alters plant growth responses to light. HaRxL106-mediated suppression of immunity is abolished in RCD1 loss-of-function mutants. We report that RCD1-type proteins are phosphorylated, and we identified Mut9-like kinases (MLKs), which function as phosphoregulatory nodes at the level of photoreceptors, as RCD1-interacting proteins. An mlk1,3,4 triple mutant exhibits stronger SA-induced defense marker gene expression compared with wild-type plants, suggesting that MLKs also affect transcriptional regulation of SA signaling. Based on the combined evidence, we hypothesize that nuclear RCD1/MLK complexes act as signaling nodes that integrate information from environmental cues and pathogen sensors, and that the Arabidopsis downy mildew pathogen targets RCD1 to prevent activation of plant immunity.


Subject(s)
Arabidopsis Proteins/metabolism , Arabidopsis/immunology , Arabidopsis/microbiology , Nuclear Proteins/metabolism , Oomycetes/metabolism , Plant Immunity , Proteins/metabolism , ADP Ribose Transferases/metabolism , Arabidopsis/drug effects , Arabidopsis/genetics , Arabidopsis Proteins/genetics , Gene Expression Regulation, Plant/radiation effects , Mutation/genetics , Nuclear Proteins/genetics , Oomycetes/drug effects , Oomycetes/isolation & purification , Oomycetes/pathogenicity , Plant Diseases/microbiology , Plant Immunity/drug effects , Plants, Genetically Modified , Protein Domains , Protein Multimerization/drug effects , Salicylic Acid/pharmacology , Signal Transduction/radiation effects , Transcription, Genetic/drug effects , Virulence/drug effects
11.
PLoS Genet ; 13(5): e1006639, 2017 May.
Article in English | MEDLINE | ID: mdl-28472137

ABSTRACT

Plant immunity protects plants from numerous potentially pathogenic microbes. The biological network that controls plant inducible immunity must function effectively even when network components are targeted and disabled by pathogen effectors. Network buffering could confer this resilience by allowing different parts of the network to compensate for loss of one another's functions. Networks rich in buffering rely on interactions within the network, but these mechanisms are difficult to study by simple genetic means. Through a network reconstitution strategy, in which we disassemble and stepwise reassemble the plant immune network that mediates Pattern-Triggered-Immunity, we have resolved systems-level regulatory mechanisms underlying the Arabidopsis transcriptome response to the immune stimulant flagellin-22 (flg22). These mechanisms show widespread evidence of interactions among major sub-networks-we call these sectors-in the flg22-responsive transcriptome. Many of these interactions result in network buffering. Resolved regulatory mechanisms show unexpected patterns for how the jasmonate (JA), ethylene (ET), phytoalexin-deficient 4 (PAD4), and salicylate (SA) signaling sectors control the transcriptional response to flg22. We demonstrate that many of the regulatory mechanisms we resolved are not detectable by the traditional genetic approach of single-gene null-mutant analysis. Similar to potential pathogenic perturbations, null-mutant effects on immune signaling can be buffered by the network.


Subject(s)
Arabidopsis Proteins/genetics , Carboxylic Ester Hydrolases/genetics , Flagellin/genetics , Host-Pathogen Interactions/genetics , Plant Immunity/genetics , Transcriptome/genetics , Arabidopsis/genetics , Arabidopsis/immunology , Arabidopsis Proteins/immunology , Carboxylic Ester Hydrolases/immunology , Cyclopentanes/immunology , Cyclopentanes/metabolism , Ethylenes/immunology , Ethylenes/metabolism , Flagellin/immunology , Gene Expression Regulation, Plant , Gene Regulatory Networks/immunology , Host-Pathogen Interactions/immunology , Oxylipins/immunology , Oxylipins/metabolism , Plant Diseases/genetics , Plant Diseases/immunology , Salicylic Acid/immunology , Salicylic Acid/metabolism , Signal Transduction , Transcriptome/immunology
12.
BMC Biol ; 15(1): 20, 2017 03 20.
Article in English | MEDLINE | ID: mdl-28320402

ABSTRACT

BACKGROUND: Plants are exposed to diverse pathogens and pests, yet most plants are resistant to most plant pathogens. Non-host resistance describes the ability of all members of a plant species to successfully prevent colonization by any given member of a pathogen species. White blister rust caused by Albugo species can overcome non-host resistance and enable secondary infection and reproduction of usually non-virulent pathogens, including the potato late blight pathogen Phytophthora infestans on Arabidopsis thaliana. However, the molecular basis of host defense suppression in this complex plant-microbe interaction is unclear. Here, we investigate specific defense mechanisms in Arabidopsis that are suppressed by Albugo infection. RESULTS: Gene expression profiling revealed that two species of Albugo upregulate genes associated with tryptophan-derived antimicrobial metabolites in Arabidopsis. Albugo laibachii-infected tissue has altered levels of these metabolites, with lower indol-3-yl methylglucosinolate and higher camalexin accumulation than uninfected tissue. We investigated the contribution of these Albugo-imposed phenotypes to suppression of non-host resistance to P. infestans. Absence of tryptophan-derived antimicrobial compounds enables P. infestans colonization of Arabidopsis, although to a lesser extent than Albugo-infected tissue. A. laibachii also suppresses a subset of genes regulated by salicylic acid; however, salicylic acid plays only a minor role in non-host resistance to P. infestans. CONCLUSIONS: Albugo sp. alter tryptophan-derived metabolites and suppress elements of the responses to salicylic acid in Arabidopsis. Albugo sp. imposed alterations in tryptophan-derived metabolites may play a role in Arabidopsis non-host resistance to P. infestans. Understanding the basis of non-host resistance to pathogens such as P. infestans could assist in development of strategies to elevate food security.


Subject(s)
Anti-Infective Agents/metabolism , Arabidopsis/immunology , Arabidopsis/microbiology , Biosynthetic Pathways , Disease Resistance/immunology , Phytophthora infestans/physiology , Plant Diseases/microbiology , Tryptophan/metabolism , Arabidopsis/drug effects , Arabidopsis/genetics , Biomass , Biosynthetic Pathways/drug effects , Biosynthetic Pathways/genetics , Brassica/microbiology , Disease Resistance/drug effects , Disease Susceptibility , Gene Expression Profiling , Gene Expression Regulation, Plant/drug effects , Gene Ontology , Genes, Plant , Glucosinolates/metabolism , Indoles/metabolism , Metabolic Networks and Pathways/drug effects , Mutation/genetics , Plant Diseases/immunology , Plant Immunity/drug effects , Plant Leaves/drug effects , Plant Leaves/microbiology , Reproducibility of Results , Salicylic Acid/pharmacology , Signal Transduction/drug effects , Thiazoles/metabolism , Up-Regulation/drug effects
14.
Curr Opin Plant Biol ; 28: 1-8, 2015 Dec.
Article in English | MEDLINE | ID: mdl-26343014

ABSTRACT

Pathogen-secreted effector proteins enable pathogens to manipulate plant immunity for successful infection. To penetrate host apoplastic space, pathogens reopen the stomata. Once the invasion into the apoplast occurs, pathogens deceive the host detection system by deploying apoplastic effectors. Pathogens also deliver an arsenal of cytosolic effectors into the host cells, which undermine host immunity such as salicylic acid (SA)-dependent immunity. Here we summarize recent findings that highlight the functions of the effectors from fungal, oomycete and bacterial pathogens in the key steps of infection at the stomata, in the apoplast, and inside the cell. We also discuss cell type-specific responses in the host during infection and the necessity of further investigation of plant-pathogen interactions at spatial and temporal resolution.


Subject(s)
Bacterial Physiological Phenomena , Fungi/physiology , Oomycetes/physiology , Plant Diseases/immunology , Plant Immunity , Bacterial Proteins/metabolism , Fungal Proteins/metabolism , Host-Pathogen Interactions , Plant Cells/immunology , Plant Cells/microbiology , Plant Diseases/microbiology
15.
Plant J ; 81(1): 40-52, 2015 Jan.
Article in English | MEDLINE | ID: mdl-25284001

ABSTRACT

Importin-αs are essential adapter proteins that recruit cytoplasmic proteins destined for active nuclear import to the nuclear transport machinery. Cargo proteins interact with the importin-α armadillo repeat domain via nuclear localization sequences (NLSs), short amino acids motifs enriched in Lys and Arg residues. Plant genomes typically encode several importin-α paralogs that can have both specific and partially redundant functions. Although some cargos are preferentially imported by a distinct importin-α it remains unknown how this specificity is generated and to what extent cargos compete for binding to nuclear transport receptors. Here we report that the effector protein HaRxL106 from the oomycete pathogen Hyaloperonospora arabidopsidis co-opts the host cell's nuclear import machinery. We use HaRxL106 as a probe to determine redundant and specific functions of importin-α paralogs from Arabidopsis thaliana. A crystal structure of the importin-α3/MOS6 armadillo repeat domain suggests that five of the six Arabidopsis importin-αs expressed in rosette leaves have an almost identical NLS-binding site. Comparison of the importin-α binding affinities of HaRxL106 and other cargos in vitro and in plant cells suggests that relatively small affinity differences in vitro affect the rate of transport complex formation in vivo. Our results suggest that cargo affinity for importin-α, sequence variation at the importin-α NLS-binding sites and tissue-specific expression levels of importin-αs determine formation of cargo/importin-α transport complexes in plant cells.


Subject(s)
Arabidopsis Proteins/physiology , Arabidopsis/metabolism , Karyopherins/physiology , Active Transport, Cell Nucleus , Amino Acid Sequence , Arabidopsis/genetics , Arabidopsis/microbiology , Arabidopsis Proteins/chemistry , Arabidopsis Proteins/genetics , Arabidopsis Proteins/metabolism , Conserved Sequence , Escherichia coli/genetics , Host-Pathogen Interactions , Karyopherins/chemistry , Karyopherins/genetics , Karyopherins/metabolism , Models, Molecular , Oomycetes/genetics , Protein Structure, Tertiary
16.
PLoS Pathog ; 10(10): e1004443, 2014 Oct.
Article in English | MEDLINE | ID: mdl-25329884

ABSTRACT

Plants have evolved strong innate immunity mechanisms, but successful pathogens evade or suppress plant immunity via effectors delivered into the plant cell. Hyaloperonospora arabidopsidis (Hpa) causes downy mildew on Arabidopsis thaliana, and a genome sequence is available for isolate Emoy2. Here, we exploit the availability of genome sequences for Hpa and Arabidopsis to measure gene-expression changes in both Hpa and Arabidopsis simultaneously during infection. Using a high-throughput cDNA tag sequencing method, we reveal expression patterns of Hpa predicted effectors and Arabidopsis genes in compatible and incompatible interactions, and promoter elements associated with Hpa genes expressed during infection. By resequencing Hpa isolate Waco9, we found it evades Arabidopsis resistance gene RPP1 through deletion of the cognate recognized effector ATR1. Arabidopsis salicylic acid (SA)-responsive genes including PR1 were activated not only at early time points in the incompatible interaction but also at late time points in the compatible interaction. By histochemical analysis, we found that Hpa suppresses SA-inducible PR1 expression, specifically in the haustoriated cells into which host-translocated effectors are delivered, but not in non-haustoriated adjacent cells. Finally, we found a highly-expressed Hpa effector candidate that suppresses responsiveness to SA. As this approach can be easily applied to host-pathogen interactions for which both host and pathogen genome sequences are available, this work opens the door towards transcriptome studies in infection biology that should help unravel pathogen infection strategies and the mechanisms by which host defense responses are overcome.


Subject(s)
Arabidopsis/drug effects , Arabidopsis/genetics , Host-Pathogen Interactions/immunology , Oomycetes/drug effects , Plant Diseases/immunology , Plant Immunity/immunology , Salicylic Acid/pharmacology , Arabidopsis Proteins/genetics , Base Sequence/genetics , Gene Expression Regulation, Plant , Host-Pathogen Interactions/drug effects , Oomycetes/genetics , Plant Diseases/genetics , Plant Diseases/microbiology , Salicylic Acid/metabolism
17.
Mol Cell ; 54(1): 43-55, 2014 Apr 10.
Article in English | MEDLINE | ID: mdl-24630626

ABSTRACT

The rapid production of reactive oxygen species (ROS) burst is a conserved signaling output in immunity across kingdoms. In plants, perception of pathogen-associated molecular patterns (PAMPs) by surface-localized pattern recognition receptors (PRRs) activates the NADPH oxidase RBOHD by hitherto unknown mechanisms. Here, we show that RBOHD exists in complex with the receptor kinases EFR and FLS2, which are the PRRs for bacterial EF-Tu and flagellin, respectively. The plasma-membrane-associated kinase BIK1, which is a direct substrate of the PRR complex, directly interacts with and phosphorylates RBOHD upon PAMP perception. BIK1 phosphorylates different residues than calcium-dependent protein kinases, and both PAMP-induced BIK1 activation and BIK1-mediated phosphorylation of RBOHD are calcium independent. Importantly, phosphorylation of these residues is critical for the PAMP-induced ROS burst and antibacterial immunity. Our study reveals a rapid regulatory mechanism of a plant RBOH, which occurs in parallel with and is essential for its paradigmatic calcium-based regulation.


Subject(s)
Arabidopsis Proteins/immunology , Arabidopsis Proteins/metabolism , Arabidopsis/enzymology , Immunity, Innate , NADPH Oxidases/immunology , Nicotiana/enzymology , Plant Immunity , Protein Serine-Threonine Kinases/metabolism , Amino Acid Sequence , Arabidopsis/genetics , Arabidopsis/immunology , Arabidopsis/microbiology , Arabidopsis Proteins/genetics , Cell Line , Enzyme Activation , Flagellin/immunology , Flagellin/metabolism , Gene Expression Regulation, Enzymologic , Gene Expression Regulation, Plant , Ligands , Molecular Sequence Data , Multienzyme Complexes , NADPH Oxidases/genetics , Peptide Elongation Factor Tu/immunology , Peptide Elongation Factor Tu/metabolism , Phosphorylation , Plant Stomata/immunology , Plant Stomata/metabolism , Protein Kinases/immunology , Protein Kinases/metabolism , Protein Serine-Threonine Kinases/genetics , Reactive Oxygen Species/metabolism , Receptors, Immunologic/metabolism , Receptors, Pattern Recognition/immunology , Receptors, Pattern Recognition/metabolism , Signal Transduction , Nicotiana/genetics , Nicotiana/immunology , Nicotiana/microbiology
18.
PLoS Biol ; 11(12): e1001732, 2013 Dec.
Article in English | MEDLINE | ID: mdl-24339748

ABSTRACT

Plants are continually exposed to pathogen attack but usually remain healthy because they can activate defences upon perception of microbes. However, pathogens have evolved to overcome plant immunity by delivering effectors into the plant cell to attenuate defence, resulting in disease. Recent studies suggest that some effectors may manipulate host transcription, but the specific mechanisms by which such effectors promote susceptibility remain unclear. We study the oomycete downy mildew pathogen of Arabidopsis, Hyaloperonospora arabidopsidis (Hpa), and show here that the nuclear-localized effector HaRxL44 interacts with Mediator subunit 19a (MED19a), resulting in the degradation of MED19a in a proteasome-dependent manner. The Mediator complex of ∼25 proteins is broadly conserved in eukaryotes and mediates the interaction between transcriptional regulators and RNA polymerase II. We found MED19a to be a positive regulator of immunity against Hpa. Expression profiling experiments reveal transcriptional changes resembling jasmonic acid/ethylene (JA/ET) signalling in the presence of HaRxL44, and also 3 d after infection with Hpa. Elevated JA/ET signalling is associated with a decrease in salicylic acid (SA)-triggered immunity (SATI) in Arabidopsis plants expressing HaRxL44 and in med19a loss-of-function mutants, whereas SATI is elevated in plants overexpressing MED19a. Using a PR1::GUS reporter, we discovered that Hpa suppresses PR1 expression specifically in cells containing haustoria, into which RxLR effectors are delivered, but not in nonhaustoriated adjacent cells, which show high PR1::GUS expression levels. Thus, HaRxL44 interferes with Mediator function by degrading MED19, shifting the balance of defence transcription from SA-responsive defence to JA/ET-signalling, and enhancing susceptibility to biotrophs by attenuating SA-dependent gene expression.


Subject(s)
Arabidopsis/physiology , Host-Pathogen Interactions/physiology , Peronospora/immunology , Plant Diseases/microbiology , Plant Growth Regulators/physiology , Plant Immunity/physiology , Salicylic Acid/metabolism , Arabidopsis Proteins/physiology , Host-Pathogen Interactions/immunology , Mediator Complex/physiology , Plant Diseases/immunology
19.
J Biol Chem ; 288(20): 14332-14340, 2013 May 17.
Article in English | MEDLINE | ID: mdl-23569203

ABSTRACT

Calcium-dependent protein kinases (CDPKs) are Ca(2+) sensors that regulate diverse biological processes in plants and apicomplexans. However, how CDPKs discriminate specific substrates in vivo is still largely unknown. Previously, we found that a potato StCDPK5 is dominantly localized to the plasma membrane and activates the plasma membrane NADPH oxidase (RBOH; for respiratory burst oxidase homolog) StRBOHB by direct phosphorylation of the N-terminal region. Here, we report the contribution of the StCDPK5 N-terminal variable (V) domain to activation of StRBOHB in vivo using heterologous expression system in Nicotiana benthamiana. Mutations of N-terminal myristoylation and palmitoylation sites in the V domain eliminated the predominantly plasma membrane localization and the capacity of StCDPK5 to activate StRBOHB in vivo. A tomato SlCDPK2, which also contains myristoylation and palmitoylation sites in its N terminus, phosphorylated StRBOHB in vitro but not in vivo. Functional domains responsible for activation and phosphorylation of StRBOHB were identified by swapping regions for each domain between StCDPK5 and SlCDPK2. The substitution of the V domain of StCDPK5 with that of SlCDPK2 abolished the activation and phosphorylation abilities of StRBOHB in vivo and relocalized the chimeric CDPK to the trans-Golgi network, as observed for SlCDPK2. Conversely, SlCDPK2 substituted with the V domain of StCDPK5 localized to the plasma membrane and activated StRBOHB. These results suggest that the V domains confer substrate specificity in vivo by dictating proper subcellular localization of CDPKs.


Subject(s)
Gene Expression Regulation, Plant , Mutation , NADPH Oxidases/metabolism , Nicotiana/metabolism , Plant Proteins/metabolism , Protein Kinases/metabolism , Calcium/metabolism , Cell Membrane/metabolism , Solanum lycopersicum/enzymology , Solanum lycopersicum/genetics , Microscopy, Confocal , Phosphorylation , Plant Immunity , Plant Proteins/genetics , Protein Kinases/genetics , Reactive Oxygen Species , Recombinant Proteins/genetics , Recombinant Proteins/metabolism , Respiratory Burst , Signal Transduction , Solanum tuberosum/enzymology , Solanum tuberosum/genetics , Substrate Specificity
20.
Mol Plant Microbe Interact ; 26(3): 271-7, 2013 Mar.
Article in English | MEDLINE | ID: mdl-23151172

ABSTRACT

Sequential recognition of invading microbes and rapid induction of plant immune responses comprise at least two recognition systems. Early basal defenses are initiated by pathogen-associated molecular patterns and pattern recognition receptors (PRR) in the plasma membrane. Pathogens produce effectors to suppress defense but plants, in turn, can sense such effectors by dominant plant resistance (R) gene products. Plant PRR and R proteins modulate signaling networks for defense responses that rely on rapid production of reactive nitrogen species (RNS) and reactive oxygen species (ROS). Recent research has shown that nitric oxide (NO) mainly mediates biological function through chemical reactions between locally controlled accumulation of RNS and proteins leading to potential alteration of protein function. Many proteins specifically regulated by NO and participating in signaling during plant defense response have been identified, highlighting the physiological relevance of these modifications in plant immunity. ROS function independently or in cooperation with NO during defense, modulating the RNS signaling functions through the entire process. This review provides an overview of current knowledge about regulatory mechanisms for NO burst and signaling, and crosstalk with ROS in response to pathogen attack.


Subject(s)
Nitric Oxide/metabolism , Plant Immunity , Plants/immunology , Signal Transduction , Host-Pathogen Interactions , Plant Proteins/metabolism , Plants/metabolism , Plants/microbiology , Reactive Nitrogen Species/metabolism , Reactive Oxygen Species/metabolism , Receptors, Pattern Recognition/physiology
SELECTION OF CITATIONS
SEARCH DETAIL
...